Skip to main content
Log in

Effect of bismuth (Bi3+) substitution on structural, optical, dielectric and magnetic nature of La2CoMnO6 double perovskite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Double perovskite oxide materials represented as A2BB′O6 have attracted a great attention due to their diverse electrical, magnetic and structural properties. In this report, we discuss synthesis, structural, optical, magnetic and electric nature of the double perovskite manganites of the type La2−xBixCoMnO6 [x = 0.0, 0.1, 0.2]. These solid-state reaction route products with x = 0.0, 0.1 were found monoclinic structured (P 1 21 / n 1) confirmed from the X-ray diffraction data analysis, whereas the sample with x = 0.2 has acquired a new structure confirmed to be cubic (Fm-3 m) with another phase corresponding to Bi2O3 crystallized in monoclinic structure acquiring space groups P 1 21 / c 1. The results of XRD data analysis were re-verified via Rietveld refinement. The phase formation was further verified via Raman and FTIR spectral studies. The samples were investigated for composition and morphology also. The optical bandgap was determined (≈ 1 eV) from the diffuse reflectance UV–Vis spectra. Temperature-dependent dielectric constant and dielectric loss was investigated in the temperature range of 320–90 K at various constant values of applied ac field and the results were exceptionally good. Electrical (dc) resistivity exploiting four-probe technique with and without magnetic field infer the samples are semiconducting in nature. Room temperature magnetic measurement reveals the samples exhibit low magnetic moment which shows linear behaviour in both forward and reverse field values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Zhao, L. Shi, S. Zhou, J. Zhao, H. Yang, Y. Guo, J. Appl. Phys. 106, 123901 (2009)

    Article  Google Scholar 

  2. R.I. Dass, J.B. Goodenough, Phys. Rev. B: Condens. Matter Mater. Phys. 67, 014401 (2003)

    Article  Google Scholar 

  3. H. Guo, J. Burgess, S. Street, A. Gupta, T.G. Calvareseand, M.A. Subramanian, Appl. Phys. Lett. 89, 022509 (2006)

    Article  Google Scholar 

  4. M. Sonobe, K. Asai, J. Phys. Soc. Jpn. 61, 4193 (1992)

    Article  CAS  Google Scholar 

  5. M.N. Iliev, M.V. Abrashev, A.P. Litvinchuk, V.G. Hadjiev, H. Guo, A. Gupta, Phys. Rev. B 75, 104118 (2007)

    Article  Google Scholar 

  6. S. Zhou, L. Shi, H. Yang, J. Zhao, Appl. Phys. Lett. 91, 172505 (2007)

    Article  Google Scholar 

  7. M.P. Singh, S. Charpentier, K.D. Truong, P. Fournier, Appl. Phys. Lett. 90, 211915 (2007)

    Article  Google Scholar 

  8. M.P. Singh, K.D. Truong, P. Fournier, Appl. Phys. Lett. 91, 042504 (2007)

    Article  Google Scholar 

  9. K.D. Truong, J. Laverdière, M.P. Singh, S. Jandl, P. Fournier, Phys. Rev. B 76, 132413 (2007)

    Article  Google Scholar 

  10. J. Krishna Murthy, A. Venimadhav, J. Appl. Phys. 111, 024102 (2012)

    Article  Google Scholar 

  11. R.N. Mahato, V. Sankaranarayanan, J. Appl. Phys. 107, 09D714 (2010)

    Article  Google Scholar 

  12. J.K. Murthy, A. Venimadhav, AIP Conf. Proc. 1447, 12351236 (2012)

    Google Scholar 

  13. R.S. Freitas et al., Phys. Rev. B 64, 144404 (2001)

    Article  Google Scholar 

  14. T. Zhang et al., J. Appl. Phys. 100, 094324 (2006)

    Article  Google Scholar 

  15. Y. Bai, Y. Xia, H. Li, L. Han, Z. Wang, X. Wu, S. Lv, X. Liu, J. Meng, J. Phys. Chem. C 116, 16841–16847 (2012)

    Article  CAS  Google Scholar 

  16. Y.Q. Lin, X.M. Chen, J. Am. Ceram. Soc. 94, 782–787 (2011)

    Article  CAS  Google Scholar 

  17. R.B.M. Filho, A.P. Ayala, C.W.A. de Paschoal, Appl. Phys. Lett. 102, 192902 (2013)

    Article  Google Scholar 

  18. G. Busca, V. Lorenzelli, Mater. Chem. 7, 89–126 (1982)

    Article  CAS  Google Scholar 

  19. G.V.S. Rao, C.N.R. Rao, J.R. Ferraro, Appl. Spectrosc. 24, 436–445 (1970)

    Article  CAS  Google Scholar 

  20. M.A. Magray, M. Ikram, J. Mater. Sci.: Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01188-1

    Article  Google Scholar 

  21. S.A. Islam, M. Ikram, Rare Met. (2019). https://doi.org/10.1007/s12598-019-01207-4

    Article  Google Scholar 

  22. J. Tauc, Optical Properties of Solid’s (North Holland Publishers, Amsterdem, 1970)

    Google Scholar 

  23. M. Saleem, S. Tiwari, M. Soni, N. Bajpai, A. Mishra, Int. J. Modern Phys. B 34, 2050033 (2020). https://doi.org/10.1142/S0217979220500332

    Article  CAS  Google Scholar 

  24. R. Pirc, R. Blinc, J.F. Scott, Phys. Rev. B 79, 214114 (2009)

    Article  Google Scholar 

  25. V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95, 1 (2012)

    Article  CAS  Google Scholar 

  26. G.A. Samara, J. Phys.: Condens. Matter. 15, R367–R411 (2003)

    CAS  Google Scholar 

  27. M.G. Masud, A. Ghosh, J. Sannigrahi, B.K. Chaudhuri, J. Phys.: Condens. Matter. 24, 295902 (2012)

    Google Scholar 

  28. P. Lunkenheimer, S. Krohns, S. Riegg, S.G. Ebbinghaus, A. Reller, A. Loidl, Eur. Phys. J. Special Topics 180, 61–89 (2010)

    Article  Google Scholar 

  29. M. Saleem, B.R. Bhagat, A. Mishra, J. Inorg. Organomet. Polym. Mater. 29, 2103–2115 (2019)

    Article  CAS  Google Scholar 

  30. M. Saleem, M. Soni, N. Diksha, M. Bajpai, A. Varshney, D. Varshney. Mishra, AIP Conf. Proc. 2115, 030433 (2019). https://doi.org/10.1063/1.5113272

    Article  CAS  Google Scholar 

  31. M. Viswanathan, P.S. Anil Kumar, V.S. Bhadram, C. Narayana, A.K. Bera, S.M. Yusuf, J. Phys.:Condens. Matter 22, 346006 (2010)

    CAS  Google Scholar 

  32. R.C. Sahoo, D. Paladhi, T.K. Nath, J. Magnet. Magn. Mater. 436, 77–84 (2017)

    Article  CAS  Google Scholar 

  33. Q. Li, L. Xing, M. Xu, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.03.331

    Article  Google Scholar 

  34. A. Yadav, J. Shah, R. Gupta, A. Shukla, S. Singh, R.K. Kotnala, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.04.162

    Article  Google Scholar 

  35. D.P. Joseph, N.P. Kumar, J.W. Lin, W.C. Chin, J.G. Lin, Int. Conf. Asian Union Magnet. Soc. (2016). https://doi.org/10.1109/ICAUMS.2016.8479952

    Article  Google Scholar 

  36. C. Thirmal, C. Nayek, P. Murugavela, V. Subramanian, AIP Adv. 3, 112109 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge UGC DAE CSR Institute—Indore for all the characterization facilities. Special thanks are extended to Dr. A. Benerjee, Centre Director UGC DAE CSR Institute—Indore and other scientists there namely Dr. M. Gupta, Dr. VG Sathe, Dr. R. Rawat, Dr. Ganeshan, Dr. Venkatesh, Dr. U. Deshpande for their support and guidance. Further we are grateful to L. Bahera and VK Ahire and other engineers for careful timely measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Saleem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bajpai, N., Saleem, M. & Mishra, A. Effect of bismuth (Bi3+) substitution on structural, optical, dielectric and magnetic nature of La2CoMnO6 double perovskite. J Mater Sci: Mater Electron 32, 12890–12902 (2021). https://doi.org/10.1007/s10854-020-04348-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04348-w

Navigation