Skip to main content
Log in

Transport characteristics of AlGaN/GaN structures for amplification of terahertz radiations

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study of devices to amplify the terahertz (THz) radiations is a subject of intense research among the scientific community owing to its interdisciplinary applications. We explore the possibility of amplification of THz radiations by investigating the transport measurements of GaN/AlGaN structures. We investigate the transport characteristics of AlGaN/GaN high-electron-mobility transistor (HEMT), transmission lines model (TLM), and interdigitated finger (IDF) structures as functions of geometry, temperature, and operating conditions. In the transport measurements of HEMT structure at 300 K, the pulsed mode operation attains higher value of the drain current in comparison to the continuous-wave operation mode of the relatively larger geometries which is typically related to the self-heating effect. Nevertheless, the pulsed mode operation transport measurements of the relatively smaller HEMT structures overlap and attain even lower drain current values than that of the CW operation mode measurements whose origin is attributed to the trap manifestation at low temperatures. The major part of the applied voltage on the symmetric IDF structure is spread over the contacts whilst less than \(10~\%\) will effectively be applied on the channel. Moreover, the transport measurements of 5 \(\mu\)m long TLM structure at 7 K show a kink at 0.1 V which is originated from the onset of the optical phonon transit time resonance mechanism. The present investigations of AlGaN/GaN structures should be helpful to obtain terahertz amplification in the electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Sharma, H. Kaur, M. Singh, Recent advances of efficient design of Terahertz Quantum-Cascade lasers. Plasmonics 16, 449–461 (2021)

    Article  Google Scholar 

  2. R. Sharma, L. Schrottke, M. Wienold, A. Tahraoui, R. Hey, H.T. Grahn, Effect of stimulated emission on the transport characteristics of terahertz quantum-cascade lasers. Appl. Phys. Lett. 99, 1511161–1511163 (2011)

    Article  Google Scholar 

  3. T. Laurent, R. Sharma, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, S. Chenot, J.P. Faurie, B. Beaumont, P. Shiktorov, E. Starikov, V. Gruzinskis, V.V. Korotyeyev, V.A. Kochelap, Voltage-controlled sub- terahertz radiation transmission through GaN quantum well structure. Appl. Phys. Lett. 99, 082101 (2011)

    Article  ADS  Google Scholar 

  4. R. Sharma, T. Laurent, J. Torres, P. Nouvel, S. Blin, L. Varani, Y. Cordier, M. Chmielowska, J.P. Faurie, B. Beaumont, Terahertz transmission and effective gain measurement of two-dimensional electron gas. Phys. Status Solidi A 210, 1454–1458 (2013)

    Article  ADS  Google Scholar 

  5. P. Shiktorov, E. Starikov, V. Gruzinskis, L. Varani, C. Palermo, J.F. Millithaler, L. Reggiani, Frequency limits of terahertz radiation generated by optical-phonon transit-time resonance in quantum wells and heterolayers. Phys. Rev. B 76, 045333 (2007)

    Article  ADS  Google Scholar 

  6. D. Dragoman, M. Dragoman, Terahertz fields and applications. Prog. Quantum Electron. 28, 1–66 (2004)

    Article  ADS  MATH  Google Scholar 

  7. E. Starikov, P. Shiktorov, V. Gružinskis, L. Reggiani, L. Varani, J.C. Vaissière, J.H. Zhao, Monte Carlo simulation of the generation of terahertz radiation in GaN. J. Appl. Phys. 89, 1161–1171 (2001)

    Article  ADS  Google Scholar 

  8. E. Starikov, P. Shiktorov, V. Gružinskis, L. Varani, C. Palermo, J.-F. Millithaler, L. Reggiani, Terahertz generation in nitrides due to transit-time resonance assisted by optical phonon emission. J. Phys.: Condens. Matter 20, 384209 (2008)

    Google Scholar 

  9. J. Kuzmik, InAlN/(In)GaN high electron mobility transistors: some aspects of the quantum well heterostructure proposal. Semicond. Sci. Technol. 17, 540 (2002)

    Article  ADS  Google Scholar 

  10. T. Suemitsu, T. Enoki, N. Sano, M. Tomizawa, Y. Ishii, An analysis of the kink phenomena in InAlAs/InGaAs HEMT’s using two-dimensional device simulation. IEEE Trans. Elec. Dev. 45, 2390 (1998)

    Article  ADS  Google Scholar 

  11. O. Fathallah, M. Gassoumi, B. Grimbert, C. Gaquiere, H. Maaref, Parasitic effects and traps in AlGaN/GaN HEMT on sapphire substrate. Euro. Phys. J. Appl. Phys. 51, 10304 (2010)

    Article  ADS  Google Scholar 

  12. Y. Pan, Influence of N-vacancy on the electronic and optical properties of bulk GaN from first-principles investigations. Int. J. Energ. Res. 45, 15512–15520 (2021)

    Article  Google Scholar 

  13. Y. Pan, The influence of N-vacancy on the electronic and optical properties of bulk InN nitrides. Mater. Sci. Eng. B: Solid-State Mater. Adv. Technol. 271, 115265 (2021)

    Article  Google Scholar 

  14. E. Yu, Y. Pan, Influence of noble metals on the electronic and optical properties of LiH hydride: first-principles calculations. Int. J. Hydrog. Energ. 71, 35342–35350 (2021)

    Article  Google Scholar 

  15. C. Shuang, P. Yong, Influence of group III and IV elements on the hydrogen evolution reaction of MoS2 disulfide. J. Phys. Chem. C 125, 11848–11856 (2021)

    Article  Google Scholar 

  16. C. Shuang, P. Yong, Noble metal interlayer-doping enhances the catalytic activity of 2H-MoS2 from first-principles investigations. Int. J. Hydrog. Energ. 46, 21040–21049 (2021)

    Article  Google Scholar 

  17. V. Kumar, A. Kuliev, R. Schwindt, M. Muir, G. Simin, J. Yang, M. Khan, I. Adesida, High performance 0.25 lm gate-length AlGaN/GaN HEMTs on sapphire with power density of over 4.5 W/mm at 20 GHz. Solid State Electron. 47, 1577–1580 (2003)

    Article  ADS  Google Scholar 

  18. C. Lin, W. Wang, P. Lin, C. Lin, Y. Chang, Y. Chan, Transient pulsed analysis on GaN HEMTs at cryogenic temperatures. IEEE Electron Device Lett. 26, 710–712 (2005)

    Article  ADS  Google Scholar 

  19. A. Parker, J. Rathmell, Measurement and characterization of HEMT dynamics. IEEE Trans. Microw. Theory Tech. 49, 2105–2111 (2001)

    Article  ADS  Google Scholar 

  20. J.C. Her, K. Lee, S. Lee, J. Lee, J. Oh, M. Han, K. Seo, Pulsed current-voltage-temperature characteristics of AlGaN/GaN high electron mobility transistor under isothermal conditions. J. Appl. Phys. 44, 2726 (2005)

    Article  Google Scholar 

  21. K. Horio, A. Nakajima, K. Itagaki, Analysis of field-plate effects on buffer-related lag phenomena and current collapse in GaN MESFETs and AlGaN/GaN HEMTs. Semicond. Sci. Technol. 24, 085022 (2009)

    Article  ADS  Google Scholar 

  22. L. Xia, A. Hanson, T. Boles, D. Jin, On reverse gate leakage current of GaN high electron mobility transistors on silicon substrate. Appl. Phys. Lett. 102, 135510 (2013)

    Article  Google Scholar 

  23. G. Li, B. Song, S. Ganguly, M. Zhu, R. Wang, X. Yan, J. Verma, V. Protasenko, H.G. Xing, D. Jena, Two-dimensional electron gases in strained quantum wells for AlN/GaN/AlN double heterostructure field-effect transistors on AlN. Appl. Phys. Lett. 104, 193506 (2014)

    Article  ADS  Google Scholar 

  24. M. Meneghini, I. Rossetto, D. Bisi, A. Stocco, A. Chini, A. Pantellini, C. Lanzieri, A. Nanni, G. Meneghesso, E. Zanoni, Buffer traps in Fe-Doped AlGaN/GaN HEMTs: investigation of the physical properties based on pulsed and transient measurements. IEEE Trans. Electron Devices 61, 4070–4077 (2014)

    Article  ADS  Google Scholar 

  25. M. Wespel, V.M. Polyakov, M. Dammann, R. Reiner, P. Waltereit, R. Quay, M. Mikulla, O. Ambacher, Trapping effects at the drain edge in 600 V GaN-on-Si HEMTs. IEEE Trans. Electron Devices 63, 598 (2016)

    Article  ADS  Google Scholar 

  26. Y. Tang, J. Shinohara, D. Regan, A. Corrion, D. Brown, J. Wong, A. Stzmitz, H. Fung, S. Kim, M. Micovic, Ultrahigh-speed GaN high-electron-mobility transistors with \(f_(T)\)\(f_(max)\) of 454/444 GHz. IEEE Electron Device Lett. 36, 549–551 (2015)

    Article  ADS  Google Scholar 

  27. S. Yang, C. Zhou, S. Han, J. Wei, K. Sheng, K.J. Chen, Impact of substrate bias polarity on buffer-related current collapse in AlGaN/GaN-on-Si power devices. IEEE Trans. Electron Devices 64, 5048–5056 (2017)

    Article  ADS  Google Scholar 

  28. H. Amano, Y. Baines, E. Beam, M. Borga, T. Bouchet, P.R. Chalker, M. Charles, K.J. Chen, N. Chowdhury, R. Chu, C.D. Santi, M.M.D. Sauga, S. Decoutere, L.D. Cioccio, B. Eckardt, T. Egawa, P. Fay, J.J. Freedsman, L. Guido, O. Häberlen, G. Haynes, T. Heckel, D. Hemakumara, P. Houston, J. Hu, M. Hua, Q. Huang, A. Huang, S. Jiang, H. Kawai, D. Kinzer, M. Kuball, A. Kumar, K.B. Lee, X. Li, D. Marcon, M. März, R. McCarthy, G. Meneghesso, M. Meneghini, E. Morvan, A. Nakajima, E.M.S. Narayanan, S. Oliver, T. Palacios, D. Piedra, M. Plissonnier, R. Reddy, M. Sun, I. Thayne, A. Torres, N. Trivellin, V. Unni, M.J. Uren, M.V. Hove, D.J. Wallis, J. Wang, J. Xie, S. Yagi, S. Yang, C. Youtsey, R. Yu, E. Zanoni, S. Zeltner, Y. Zhang, Vertical GaN power devices. J. Phys. D Appl. Phys. 51, 163001 (2018)

    Article  ADS  Google Scholar 

  29. J.H. Lee, J.M. Ju, G. Atamaca, J.K. Kim, S.H. Kang, Y.S. Lee, S.H. Lee, J.W. Lim, H.S. Kwon, S.B.L. Sesividin, J.H. Lee, High figure-of-merit ( V2BR/RON ) AlGaN/GaN power HEMT with periodically C-Doped GaN buffer and AlGaN back barrier. J. Electron Device Soc. 6, 1179 (2018)

    Article  Google Scholar 

  30. S.J. Bader, R. Chaudhuri, K. Nomoto, A. Hickman, Z. Chen, H.W. Then, D.A. Muller, H.G. Xing, D. Jena, Gate-recessed E-mode p-channel HFET with high on-current based on GaN/AlN 2D hole gas. IEEE Electron Device Lett. 39, 1848–1851 (2018)

    Article  ADS  Google Scholar 

  31. S. Usami, N. Mayama, K. Toda, A. Tanaka, M. Deki, S. Nitta, Y. Honda, H. Amano, Direct evidence of Mg diffusion through threading mixed dislocations in GaN p-n diodes and its effect on reverse leakage current. Appl. Phys. Lett. 114, 232105 (2019)

    Article  ADS  Google Scholar 

  32. J.G. Kim, S.H. Kang, L. Janicki, J.H. Lee, J.M. Ju, K.W. Kim, Y.S. Lee, S.H. Lee, J.W. Lim, H.S. Kwon, J.H. Lee, Growth of AlGaN/GaN heterostructure with lattice-matched AlIn(Ga)N back barrier. Solid-State Electron 152, 24 (2019)

    Article  ADS  Google Scholar 

  33. A. Hickman, R. Chaudhuri, S.J. Bader, K. Nomoto, K. Lee, H.G. Xing, D. Jena, High breakdown voltage in RF AlN/GaN/AlN quantum well HEMTs. IEEE Electron Device Lett. 40, 1293–1296 (2019)

    Article  ADS  Google Scholar 

  34. S. Duguay, A. Echeverri, C. Castro, O. Latry, Evidence of Mg segregation to threading dislocation in normally-off GaN-HEMT. IEEE Trans. Nanotechnol. 18, 995–998 (2019)

    Article  ADS  Google Scholar 

  35. J.J. Dai, C.W. Liu, S.K. Wu, S.H. Huynh, J.G. Jiang, S.A. Yen, T.T. Mai, H.C. Wen, W.C. Chou, C.W. Hu, Improving transport properties of GaN-Based HEMT on Si (111) by controlling SiH4 flow rate of the SiNx nano-mask. Coatings 11, 16 (2021)

    Article  Google Scholar 

  36. J.G. Kim, C. Cho, E. Kim, J.S. Hwang, K.H. Park, J.H. Lee, High breakdown voltage and low-current dispersion in AlGaN/GaN HEMTs with high-quality AlN buffer layer. IEEE Trans. Electron Devices 68, 1513–1517 (2021)

    Article  ADS  Google Scholar 

  37. F. Hájek, A. Hospodková, P. Hubík, Z. Gedeonová, T. Hubáek, J. Pangrác, K. Kuldová, Transport properties of AlGaN/GaN HEMT structures with back barrier: impact of dislocation density and improved design. Semicond. Sci. Technol. 36, 075016 (2021)

    Article  ADS  Google Scholar 

  38. D. Sawdai, D. Pavlidis, D. Cui, Enhanced transmission line model structures for accurate resistance evaluation of small-size contacts and for more reliable fabrication. IEEE Trans. Electron Devices 46, 1302 (1999)

    Article  ADS  Google Scholar 

  39. S. Wang, D. Mao, A. Muhammad, S. Peng, D. Zhang, J. Shi, Z. Jin, Characterization of the quality of metal-graphene contact with contact end resistance measurement. Appl. Phys. A 122, 643 (2016)

    Article  ADS  Google Scholar 

  40. O. Balci, C. Kocabas, Rapid thermal annealing of graphene-metal contact Appl. Phys. Lett. 101, 243105 (2012)

    Google Scholar 

  41. L. Vorob’ev, S. Danilov, V. Tulupenko, D. Firsov, Generation of millimeter radiation due to electric-field-induced electron transit time resonance in indium phosphide. JETP Lett. 73, 219–222 (2001)

    Article  ADS  Google Scholar 

  42. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Varani, C. Palermo, Reggiani MillithalerJF, Terahertz generation in nitrides due to transit time resonance assisted by optical phonon emission. J. Phys. Condens. Matter 20, 384209 (2008)

    Article  ADS  Google Scholar 

  43. E. Starikov, P. Shiktorov, V. Gruzinskis, L. Reggiani, L. Varani, Coherent TeraHertz radiation generation due to carrier interaction with low temperature optical phonons in semiconductors achievements and perspectives. J. Nanoelectron. Optoelectron. 2, 1 (2007)

    Article  Google Scholar 

  44. G.I. Syngayivska, V.V. Korotyeyev, V.A. Kochelap, L. Varani, THz frequency and wavevector-dependent conductivity of low-density drifting electron gas in GaN Monte Carlo calculations. J. Appl. Phys. 125, 135704 (2019)

    Article  ADS  Google Scholar 

  45. V.V. Korotyeyev, V.A. Kochelap, S. Danylyuk, L. Varani, Spatial dispersion of the high frequency conductivity of two-dimensional electron gas subjected to a high electric field: collisionless case. Appl. Phys. Lett. 113, 041102 (2018)

    Article  ADS  Google Scholar 

  46. H.J. Song, T. Nagatsuma, Handbook of terahertz technologies: devices and applications (CRC Press, USA, 2015)

    Book  Google Scholar 

  47. S.A. Mikhailov, N.A. Savostianova, A.S. Moskalenko, Negative dynamic conductivity of a current-driven array of graphene nanoribbons. Phys. Rev. B 94, 035439 (2016)

    Article  ADS  Google Scholar 

  48. G.I. Syngayivska, V.V. Korotyeyev, Electrical and high-frequency properties of compensated GaN under electron streaming conditions. Ukraine J. Phys. 58, 40–55 (2013)

    Article  Google Scholar 

  49. Y. Cordier, M. Azize, N. Baron, S. Chenot, O. Tottereau, J. Massies, AlGaN/GaN HEMTs regrown by MBE on epi-ready semi-insulating GaN-on-sapphire with inhibited interface contamination. J. Crystal Growth 309, 1–7 (2007)

    Article  ADS  Google Scholar 

  50. V.A. Shalygin, L.E. Vorobjev, D.A. Firsov, A.N. Sofronov, G.A. Melentyev, W.V. Lundin, A.E. Nikolaev, A.V. Sakharov, A.F. Tsatsulnikov, Blackbody-like emission of terahertz radiation from AlGaN/GaN heterostructure under electron heating in lateral electric field. J. Appl. Phys. 109, 073108-1-073108–6 (2011)

    Article  ADS  Google Scholar 

  51. K.J. Lee, E.H. Shin, K.Y. Lim, Reduction of dislocations in GaN epilayers grown on Si (111) substrate using SixNy inserting layer. Appl. Phys. Lett. 85, 1502–1504 (2004)

    Article  ADS  Google Scholar 

  52. S. Arulkumarana, T. Egawa, S. Matsui, H. Ishikawa, Enhancement of breakdown voltage by AlN buffer layer thickness in AlGaN -GaN high-electron-mobility transistors on 4 in. diameter silicon. Appl. Phys. Lett. 86, 123503-1-123503–3 (2005)

    ADS  Google Scholar 

  53. H.W. Hubers, S.G. Pavlov, V.N. Shastin, Terahertz lasers based on germanium and silicon. Semicond. Sci. Technol. 20, S211–S221 (2005)

    Article  Google Scholar 

  54. V.N. Bondar, A.T. Dalakyan, L.E. Vorob’ev, D.A. Firsov, V.N. Tulupenko, Far-IR radiation of hot holes in germanium for mutually perpendicular directions of uniaxial pressure and electric field. JETP Lett. 70, 265–269 (1999)

    Article  ADS  Google Scholar 

  55. A. Iniguez-de-la Torre, J. Mateos, T. Gonzalez, Terahertz current oscillations assisted by optical phonon emission in GaN n(+)nn(+) diodes: Monte Carlo simulations. J. Appl. Phys. 107, 5 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

The French National Research Agency (ANR) is sincerely acknowledged for funding the research work under contract AITHER no. ANR-07-BLAN-0321. Corresponding author Rajesh Sharma acknowledges the help of Manjot Singh for critically reading the response letter to the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Sharma.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, H., Sharma, R., Laurent, T. et al. Transport characteristics of AlGaN/GaN structures for amplification of terahertz radiations. Appl. Phys. A 128, 144 (2022). https://doi.org/10.1007/s00339-022-05284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-022-05284-8

Keywords

Navigation