Skip to main content
Log in

Characterization of the quality of metal–graphene contact with contact end resistance measurement

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The quality of metal–graphene contact has a great influence on the performance of graphene-based electronic devices. In this paper, a simple, fast and accurate method is introduced to evaluate the quality of metal–graphene contact, which is based on measuring the contact end resistance. Using this method, the effect of rapid thermal annealing on the metal–graphene contact is investigated. It is common observation that before the rapid thermal annealing, contact end resistance has a large variation showing that the metal–graphene contact is in a relatively unstable state when the device is just prepared. After the rapid thermal annealing treatment, contact end resistances show a good consistency for all the devices. The results of contact end resistance are consistent with the images of scanning electron microscope observed before and after the rapid thermal annealing, which indicates that using the contact end resistance to evaluate the quality of metal–graphene contact is an efficient and effective way to predict the contact quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, Y. Zhang, S. Dubonos, I. Grigorieva, A. Firsov, Science 306(5696), 666–669 (2004)

    Article  ADS  Google Scholar 

  2. A.C. Neto, F. Guinea, N. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009)

    Article  ADS  Google Scholar 

  3. Y. Wu, K.A. Jenkins, A. Valdes-Garcia, D.B. Farmer, Y. Zhu, A.A. Bol, C. Dimitrakopoulos, W. Zhu, F. Xia, P. Avouris, Nano Lett. 12(6), 3062–3067 (2012)

    Article  Google Scholar 

  4. I. Meric, N. Baklitskaya, P. Kim, K.L. Shepard, In RF performance of top-gated, zero-bandgap graphene field-effect transistors, in IEEE International Electron Devices Meeting, (2008), pp. 1–4

  5. Y.-M. Lin, C. Dimitrakopoulos, K.A. Jenkins, D.B. Farmer, H.-Y. Chiu, A. Grill, P. Avouris, Science 327(5966), 662 (2010)

    Article  ADS  Google Scholar 

  6. F. Xia, D.B. Farmer, Y.-M. Lin, P. Avouris, Nano Lett. 10(2), 715–718 (2010)

    Article  ADS  Google Scholar 

  7. C.A. Chavarin, A.A. Sagade, D. Neumaier, G. Bacher, W. Mertin, Appl. Phys. A 122(2), 1–5 (2016)

    Article  Google Scholar 

  8. Y. Wu, Y.-M. Lin, A.A. Bol, K.A. Jenkins, F. Xia, D.B. Farmer, Y. Zhu, P. Avouris, Nature 472(7341), 74–78 (2011)

    Article  ADS  Google Scholar 

  9. K.N. Parrish, D. Akinwande, Appl. Phys. Lett. 98(18), 183505 (2011)

    Article  ADS  Google Scholar 

  10. A. Hsu, H. Wang, K.K. Kim, J. Kong, T. Palacios, IEEE Electron Device Lett. 32(8), 1008–1010 (2011)

    Article  ADS  Google Scholar 

  11. A.D. Franklin, S.-J. Han, A. Bol, V. Perebeinos, IEEE Electron Device Lett. 33(1), 17–19 (2012)

    Article  ADS  Google Scholar 

  12. H. Zhong, Z. Zhang, B. Chen, H. Xu, D. Yu, L. Huang, L. Peng, Nano Res. 8(5), 1669–1679 (2015)

    Article  Google Scholar 

  13. W.S. Leong, H. Gong, J.T. Thong, ACS Nano 8(1), 994–1001 (2013)

    Article  Google Scholar 

  14. F. Xia, V. Perebeinos, Y.-M. Lin, Y. Wu, P. Avouris, Nat. Nanotechnol. 6(3), 179–184 (2011)

    Article  ADS  Google Scholar 

  15. J. Moon, M. Antcliffe, H. Seo, D. Curtis, S. Lin, A. Schmitz, I. Milosavljevic, A. Kiselev, R. Ross, D. Gaskill, Appl. Phys. Lett. 100(20), 203512 (2012)

    Article  ADS  Google Scholar 

  16. F.P. Rouxinol, R.V. Gelamo, R.G. Amici, A.R. Vaz, S.A. Moshkalev, Appl. Phys. Lett. 97(25), 253104 (2010)

    Article  ADS  Google Scholar 

  17. O. Balci, C. Kocabas, Appl. Phys. Lett. 101(24), 243105 (2012)

    Article  ADS  Google Scholar 

  18. Z. Qin, Z. Chen, Y. Tong, X. Ding, X. Hu, T. Yu, G. Zhang, Appl. Phys. A 78(5), 729–731 (2004)

    Article  ADS  Google Scholar 

  19. S.-A. Peng, Z. Jin, P. Ma, D.-Y. Zhang, J.-Y. Shi, J.-B. Niu, X.-Y. Wang, S.-Q. Wang, M. Li, X.-Y. Liu, Carbon 82, 500–505 (2015)

    Article  Google Scholar 

  20. A. Venugopal, L. Colombo, E. Vogel, Appl. Phys. Lett. 96(1), 013512 (2010)

    Article  ADS  Google Scholar 

  21. D.K. Schroder, Semiconductor Material and Device Characterization (Wiley, New York, 2006)

    Google Scholar 

  22. G. Yang, D. Mei, J. Govani, G. Wang, M. Khizar, Appl. Phys. A 113(1), 207–213 (2013)

    Article  ADS  Google Scholar 

  23. J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J.W. Park, K.-H. Yoo, J. Phys. D Appl. Phys. 33(16), 1953 (2000)

    Article  ADS  Google Scholar 

  24. M. Clavel, T. Poiroux, M. Mouis, L. Becerra, J. Thomassin, A. Zenasni, G. Lapertot, D. Rouchon, D. Lafond, O. Faynot, Solid-State Electron. 71, 2–6 (2012)

    Article  ADS  Google Scholar 

  25. H. Berger, Solid-State Electron. 15(2), 145–158 (1972)

    Article  ADS  Google Scholar 

  26. W. Shockley, Report No Al-TOR-64-207 Air Force At. Lab. Wright-Patterson Air Force Base Ohio (1964)

  27. J. Moser, A. Barreiro, A. Bachtold, Appl. Phys. Lett. 91(16), 163513 (2007)

    Article  ADS  Google Scholar 

  28. L. Dong, S. Youkey, J. Bush, J. Jiao, V.M. Dubin, R.V. Chebiam, J. Appl. Phys. 101(2), 024320 (2007)

    Article  ADS  Google Scholar 

  29. T. Mueller, F. Xia, M. Freitag, J. Tsang, P. Avouris, Phys. Rev. B 79(24), 245430 (2009)

    Article  ADS  Google Scholar 

  30. Q. Ran, M. Gao, X. Guan, Y. Wang, Z. Yu, Appl. Phys. Lett. 94(10), 103511 (2009)

    Article  ADS  Google Scholar 

  31. E. Watanabe, A. Conwill, D. Tsuya, Y. Koide, Diam. Relat. Mater. 24, 171–174 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was subsidized by National Science and Technology Major Project (Grant No. 2011ZX02707.3), the National Natural Science Foundation of China (Nos. 61136005, 61404167), and Chinese Academy of Sciences (KGZD-EW-303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Jin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Mao, D., Muhammad, A. et al. Characterization of the quality of metal–graphene contact with contact end resistance measurement. Appl. Phys. A 122, 643 (2016). https://doi.org/10.1007/s00339-016-0152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0152-2

Keywords

Navigation