Skip to main content

Advertisement

Log in

Cu2O nanoparticles decorated with MoS2 sheets for electrochemical reduction of CO2 with enhanced efficiency

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Electrochemical CO2 reduction has drawn substantial attention not only due to the demand for energy but also the need for a sustainable environment. In this work, a non-noble based electrocatalyst (Cu2O-MoS2) was developed using a facile method for its application in CO2 reduction. The synthesized composite material was characterized using XPS, XRD, FTIR, Raman, FESEM and EDS. The Cu2O-MoS2 composite material presented outstanding electrocatalytic activity towards CO2 reduction, and showed a reducing current density of 113 mA/cm2-almost twice that of the bare Cu2O (61 mA/cm2) and eight times higher than that of MoS2 sheet (21.3 mA/cm2). Furthermore, the onset potential of the Cu2O-MoS2 composite material is much lower compared to bare Cu2O nanoparticles and MoS2 sheets. The faradaic efficiency of the Cu2O-MoS2 composite material depends on the applied potential and it was found to be 12.3% and 7.9% for methanol and ethanol at  − 1.3 V and − 1.1 V, respectively.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Chen, X. Zhang, T. Williams, L. Bourgeois, D.R. MacFarlane, Electrochemical reduction of CO2 on core-shell Cu/Au nanostructure arrays for syngas production. Electrochim. Acta 239, 84–89 (2017)

    Google Scholar 

  2. O.A. Baturina, Q. Lu, M.A. Padilla, L. Xin, W. Li et al., CO2 electroreduction to hydrocarbons on carbon-supported Cu nanoparticles. ACS Catal. 4, 3682–3695 (2014)

    Google Scholar 

  3. M. Gattrell, N. Gupta, A. Co, Electrochemical reduction of CO2 to hydrocarbons to store renewable electrical energy and upgrade biogas. Energy Convers. Manage. 48, 1255–1265 (2007)

    Google Scholar 

  4. J.M. Adams, G. Piovesan, Long series relationships between global interannual CO2 increment and climate: Evidence for stability and change in role of the tropical and boreal-temperate zones. Chemosphere 59, 1595–1612 (2005)

    ADS  Google Scholar 

  5. Z. Sun, T. Ma, H. Tao, Q. Fan, B. Han, Fundamentals and challenges of electrochemical CO2 reduction using two-dimensional materials. Chem 3, 560–587 (2017)

    Google Scholar 

  6. W. Wang, S. Wang, X. Ma, J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem. Soc. Rev. 40, 3703–3727 (2011)

    Google Scholar 

  7. S.N. Habisreutinger, L. Schmidt-Mende, J.K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew. Chem. Int. Ed. 52, 7372–7408 (2013)

    Google Scholar 

  8. X. Zhu, Y. Li, Review of two-dimensional materials for electrochemical CO2 reduction from a theoretical perspective. Wiley Interdisciplinary Rev.: Comput. Mol. Sci. 9, e1416 (2019)

    Google Scholar 

  9. J. Grodkowski, P. Neta, Copper-catalyzed radiolytic reduction of CO2 to CO in aqueous solutions. J. Phys. Chem. B 105, 4967–4972 (2001)

    Google Scholar 

  10. S. Rouf, Y.E. Greish, S. Al-Zuhair, Immobilization of formate dehydrogenase in metal organic frameworks for enhanced conversion of carbon dioxide to formate. Chemosphere 267, 128921 (2020)

    ADS  Google Scholar 

  11. Y. Jännsch, J.J. Leung, M. Hämmerle, E. Magori, K. Wiesner-Fleischer et al., Pulsed potential electrochemical CO2 reduction for enhanced stability and catalyst reactivation of copper electrodes. Electrochem Commun 121, 106861 (2020)

    Google Scholar 

  12. C. Ampelli, C. Genovese, M. Errahali, G. Gatti, L. Marchese et al., CO 2 capture and reduction to liquid fuels in a novel electrochemical setup by using metal-doped conjugated microporous polymers. J. Appl. Electrochem. 45, 701–713 (2015)

    Google Scholar 

  13. A. Loiudice, P. Lobaccaro, E.A. Kamali, T. Thao, B.H. Huang et al., Tailoring copper nanocrystals towards C2 products in electrochemical CO2 reduction. Angew. Chem. Int. Ed. 55, 5789–5792 (2016)

    Google Scholar 

  14. B. Khezri, A.C. Fisher, M. Pumera, CO 2 reduction: the quest for electrocatalytic materials. J. Mater. Chem. A 5, 8230–8246 (2017)

    Google Scholar 

  15. M. Miola, H. Xin-Ming, R. Brandiele, E.T. Bjerglund, D.K. Grønseth et al., Ligand-free gold nanoparticles supported on mesoporous carbon as electrocatalysts for CO2 reduction. J. CO2 Utilization 28, 50–58 (2018). https://doi.org/10.1016/j.jcou.2018.09.009

    Article  Google Scholar 

  16. D.R. Kauffman, P.R. Ohodnicki, B.W. Kail, C. Matranga, Selective electrocatalytic activity of ligand stabilized copper oxide nanoparticles. J. Phys. Chem. Lett 2, 2038–2043 (2011)

    Google Scholar 

  17. F.N. Al-Rowaili, A. Jamal, M.S. Ba Shammakh, A. Rana, A review on recent advances for electrochemical reduction of carbon dioxide to methanol using metal–organic framework (MOF) and non-MOF catalysts: Challenges and future prospects. ACS Sustain. Chem. Eng. 6, 15895–15914 (2018)

    Google Scholar 

  18. I. Bhugun, D. Lexa, J.-M. Savéant, Catalysis of the electrochemical reduction of carbon dioxide by iron (0) porphyrins: Synergystic effect of weak Brönsted acids. J. Am. Chem. Soc. 118, 1769–1776 (1996)

    Google Scholar 

  19. H.-P. Yang, Q. Lin, H.-W. Zhang, Y. Wu, L.-D. Fan et al., Selective electrochemical reduction of CO2 by a binder-free platinum/nitrogen-doped carbon nanofiber/copper foil catalyst with remarkable efficiency and reusability. Electrochem. Commun. 93, 138–142 (2018)

    Google Scholar 

  20. D. Sassone, J. Zeng, M. Fontana, A. Sacco, M.A. Farkhondehfal et al., Polymer-metal complexes as emerging catalysts for electrochemical reduction of carbon dioxide. J. Appl. Electrochem. 51, 1–11 (2021)

    Google Scholar 

  21. K.P. Kuhl, T. Hatsukade, E.R. Cave, D.N. Abram, J. Kibsgaard, T.F. Jaramillo, Electrocatalytic conversion of carbon dioxide to methane and methanol on transition metal surfaces. J. Am. Chem. Soc. 136, 14107–14113 (2014)

    Google Scholar 

  22. C. Kim, H.S. Jeon, T. Eom, M.S. Jee, H. Kim et al., Achieving selective and efficient electrocatalytic activity for CO2 reduction using immobilized silver nanoparticles. J. Am. Chem. Soc. 137, 13844–13850 (2015)

    Google Scholar 

  23. M.A. Farkhondehfal, S. Hernández, M. Rattalino, M. Makkee, A. Lamberti et al., Syngas production by electrocatalytic reduction of CO2 using Ag-decorated TiO2 nanotubes. Int. J. Hydro. Energy (2019). https://doi.org/10.1016/j.ijhydene.2019.04.180

    Article  Google Scholar 

  24. R.F. Zarandi, B. Rezaei, H.S. Ghaziaskar, A.A. Ensafi, Electrochemical conversion of CO2 to methanol using a glassy carbon electrode, modified by Pt@ histamine-reduced graphene oxide. Int. J. Hydrogen Energy 44, 30820–30831 (2019)

    Google Scholar 

  25. J.A.L. Perini, L.D. Moura, K.I. Torquato, M.V.B. Zanoni, Ag/polydopamine-modified Ti/TiO2 nanotube arrays: A platform for enhanced CO2 photoelectroreduction to methanol. J. CO2 Utilization 34, 596–605 (2019). https://doi.org/10.1016/j.jcou.2019.08.006

    Article  Google Scholar 

  26. K. Eid, M.H. Sliem, K. Jlassi, A.S. Eldesoky, G.G. Abdo et al., Precise fabrication of porous one-dimensional gC3N4 nanotubes doped with Pd and Cu atoms for efficient CO oxidation and CO2 reduction. Inorganic Chem. Commun. 107, 107460 (2019)

    Google Scholar 

  27. W. Guo, K. Shim, Y.-T. Kim, Ag layer deposited on Zn by physical vapor deposition with enhanced CO Selectivity for electrochemical CO2 reduction. Appl. Surf. Sci. 526, 146651 (2020)

    Google Scholar 

  28. X. Liu, L. Zhu, H. Wang, G. He, Z. Bian, Catalysis performance comparison for electrochemical reduction of CO 2 on Pd–Cu/graphene catalyst. RSC Adv. 6, 38380–38387 (2016)

    ADS  Google Scholar 

  29. Y. Wang, J. Zhou, W. Lv, H. Fang, W. Wang, Electrochemical reduction of CO2 to formate catalyzed by electroplated tin coating on copper foam. Appl. Surf. Sci. 362, 394–398 (2016)

    ADS  Google Scholar 

  30. W. Lv, J. Zhou, J. Bei, R. Zhang, L. Wang et al., Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate. Appl. Surf. Sci. 393, 191–196 (2017)

    ADS  Google Scholar 

  31. D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Synergistic geometric and electronic effects for electrochemical reduction of carbon dioxide using gold–copper bimetallic nanoparticles. Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  32. E. Andrews, Y. Fang, J. Flake, Electrochemical reduction of CO 2 at CuAu nanoparticles: size and alloy effects. J. Appl. Electrochem. 48, 435–441 (2018)

    Google Scholar 

  33. M. Gattrell, N. Gupta, A. Co, A review of the aqueous electrochemical reduction of CO2 to hydrocarbons at copper. J. Electroanal. Chem. 594, 1–19 (2006)

    Google Scholar 

  34. S. Dongare, N. Singh, H. Bhunia, Electrocatalytic reduction of CO2 to useful chemicals on copper nanoparticles. Appl. Surf. Sci. 537, 148020 (2021). https://doi.org/10.1016/j.apsusc.2020.148020

    Article  Google Scholar 

  35. D.Y. Jo, H.C. Ham, K.-Y. Lee, Facet-dependent Electrocatalysis in the HCOOH Synthesis from CO2 Reduction on Cu catalyst: a density functional theory study. Appl. Surf. Sci. 527, 146857 (2020)

    Google Scholar 

  36. D. Wang, J. Xu, Y. Zhu, L. Wen, J. Ye et al., HKUST-1-derived highly ordered Cu nanosheets with enriched edge sites, stepped (211) surfaces and (200) facets for effective electrochemical CO2 reduction. Chemosphere 278, 130408 (2021)

    ADS  Google Scholar 

  37. X. Zong, J. Zhang, J. Zhang, W. Luo, A. Züttel, Y. Xiong, Synergistic Cu/CeO2 carbon nanofiber catalysts for efficient CO2 electroreduction. Electrochem. Commun. 114, 106716 (2020)

    Google Scholar 

  38. A. Sheelam, A. Muneeb, B. Talukdar, R. Ravindranath, S.-J. Huang et al., Flexible and free-standing polyvinyl alcohol-reduced graphene oxide-Cu 2 O/CuO thin films for electrochemical reduction of carbon dioxide. J. Appl. Electrochem. 50, 979–991 (2020)

    Google Scholar 

  39. J.-F. Xie, Y.-X. Huang, W.-W. Li, X.-N. Song, L. Xiong, H.-Q. Yu, Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochim. Acta 139, 137–144 (2014)

    Google Scholar 

  40. M.N. Hossain, J. Wen, A. Chen, Unique copper and reduced graphene oxide nanocomposite toward the efficient electrochemical reduction of carbon dioxide. Sci. Rep. 7, 1–10 (2017)

    Google Scholar 

  41. M.I. Malik, Z.O. Malaibari, M. Atieh, B. Abussaud, Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O. Chem. Eng. Sci. 152, 468–477 (2016)

    Google Scholar 

  42. D. DeCiccio, S. Ahn, S. Sen, F. Schunk, G. Palmore, C. Rose-Petruck, Electrochemical reduction of CO2 with clathrate hydrate electrolytes and copper foam electrodes. Electrochem. Commun. 52, 13–16 (2015)

    Google Scholar 

  43. K. Iwase, T. Yoshioka, S. Nakanishi, K. Hashimoto, K. Kamiya, Copper-modified covalent triazine frameworks as non-noble-metal electrocatalysts for oxygen reduction. Angew. Chem. Int. Ed. 54, 11068–11072 (2015)

    Google Scholar 

  44. J. Qiao, P. Jiang, J. Liu, J. Zhang, Formation of Cu nanostructured electrode surfaces by an annealing–electroreduction procedure to achieve high-efficiency CO2 electroreduction. Electrochem. Commun. 38, 8–11 (2014)

    Google Scholar 

  45. P. Zhang, F. Wang, M. Yu, X. Zhuang, X. Feng, Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems. Chem. Soc. Rev. 47, 7426–7451 (2018)

    Google Scholar 

  46. N.N. Rosman, R.M. Yunus, L.J. Minggu, K. Arifin, M.N.I. Salehmin et al., Photocatalytic properties of two-dimensional graphene and layered transition-metal dichalcogenides based photocatalyst for photoelectrochemical hydrogen generation: An overview. Int. J. Hydrogen Energy 43, 18925–18945 (2018)

    Google Scholar 

  47. M.B. Wazir, M. Daud, N. Ullah, A. Hai, A. Muhammad et al., Synergistic properties of molybdenum disulfide (MoS2) with electro-active materials for high-performance supercapacitors. Int. J. Hydrogen Energy 44, 17470–17492 (2019)

    Google Scholar 

  48. C. Yu, Z.-f Cao, F. Yang, S. Wang, H. Zhong, MoS2 confined on graphene by triethanolamine for enhancing electrocatalytic hydrogen evolution performance. Int. J. Hydrogen Energy 44, 28151–28162 (2019)

    Google Scholar 

  49. C. Zhang, Z. Fu, Q. Zhao, Z. Du, R. Zhang, S. Li, Single-atom-Ni-decorated, nitrogen-doped carbon layers for efficient electrocatalytic CO2 reduction reaction. Electrochem. Commun. 116, 106758 (2020)

    Google Scholar 

  50. Y.I. Jhon, Y.T. Byun, J.H. Lee, Y.M. Jhon, Robust mechanical tunability of 2D transition metal carbides via surface termination engineering: Molecular dynamics simulation. Appl. Surf. Sci. 532, 147380 (2020)

    Google Scholar 

  51. Q. Zhao, H. Zhang, Y. Liu, M. Zhu, M. Zhang, Magnetic and optical properties of two-dimensional SnS2 nanosheets doped with Ho ions. Appl. Surf. Sci. 481, 1370–1376 (2019)

    ADS  Google Scholar 

  52. B. Roondhe, V. Sharma, H.L. Kagdada, D.K. Singh, T.S. Dasgupta, R. Ahuja, Enhancing the electronic and phonon transport properties of two-dimensional hexagonal boron nitride through oxygenation: a first principles study. Appl. Surf. Sci. 533, 147513 (2020)

    Google Scholar 

  53. M.K. Chee, C.-C. Er, J.-Y. Tang, L.-L. Tan, W.S. Chang, S.-P. Chai, Tuning the electronic band structure of graphitic carbon nitride by breaking intramolecular bonds: a simple and effective approach for enhanced photocatalytic hydrogen production. Appl. Surf. Sci. 529, 146600 (2020)

    Google Scholar 

  54. G. Li, L. Yu, H. Hu, Q. Zhu, Y. Wang, Y. Yu, Carbon-infused MoS2 supported on TiO2 nanosheet arrays for intensified anodes in lithium ion batteries. Electrochim. Acta 212, 59–67 (2016)

    Google Scholar 

  55. L. Wan, J. Liu, X. Li, Y. Zhang, J. Chen et al., Fabrication of core-shell NiMoO4@ MoS2 nanorods for high-performance asymmetric hybrid supercapacitors. Int. J. Hydrogen Energy 45, 4521–4533 (2020)

    Google Scholar 

  56. S.Z. Butler, S.M. Hollen, L. Cao, Y. Cui, J.A. Gupta et al., Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7, 2898–2926 (2013)

    Google Scholar 

  57. X. Zhang, Y. Li, D. Li, J. Xiao, W. Zhang, Y. Xu, Rice husk derived porous carbon decorated with hierarchical molybdenum disulfide microflowers: synergistic lithium storage performance and lithiation kinetics. Int. J. Hydrogen Energy 44, 7438–7447 (2019)

    Google Scholar 

  58. H. Li, K. Yu, X. Lei, B. Guo, C. Li et al., Synthesis of the MoS 2@ CuO heterogeneous structure with improved photocatalysis performance and H 2 O adsorption analysis. Dalton Trans. 44, 10438–10447 (2015)

    Google Scholar 

  59. L. Wang, Y. Ma, M. Yang, Y. Qi, Titanium plate supported MoS2 nanosheet arrays for supercapacitor application. Appl. Surf. Sci. 396, 1466–1471 (2017)

    ADS  Google Scholar 

  60. X. Hong, K. Chan, C. Tsai, J.K. Nørskov, How doped MoS2 breaks transition-metal scaling relations for CO2 electrochemical reduction. ACS Catal. 6, 4428–4437 (2016)

    Google Scholar 

  61. M. Asadi, B. Kumar, A. Behranginia, B.A. Rosen, A. Baskin et al., Robust carbon dioxide reduction on molybdenum disulphide edges. Nat. Commun. 5, 1–8 (2014)

    Google Scholar 

  62. F. Li, S.-F. Zhao, L. Chen, A. Khan, D.R. MacFarlane, J. Zhang, Polyethylenimine promoted electrocatalytic reduction of CO 2 to CO in aqueous medium by graphene-supported amorphous molybdenum sulphide. Energy Environ. Sci. 9, 216–223 (2016)

    Google Scholar 

  63. X.Y. Yu, H. Hu, Y. Wang, H. Chen, X.W. Lou, Ultrathin MoS2 nanosheets supported on N-doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties. Angew. Chem. 127, 7503–7506 (2015)

    ADS  Google Scholar 

  64. D. Voiry, R. Fullon, J. Yang, e Silva CdCC, R. Kappera R et al., The role of electronic coupling between substrate and 2D MoS 2 nanosheets in electrocatalytic production of hydrogen. Nat. Mater. 15, 1003–1009 (2016)

    ADS  Google Scholar 

  65. P. Borthakur, P.K. Boruah, M.R. Das, S.B. Artemkina, P.A. Poltarak, V.E. Fedorov, Metal free MoS 2 2D sheets as a peroxidase enzyme and visible-light-induced photocatalyst towards detection and reduction of Cr (vi) ions. New J. Chem. 42, 16919–16929 (2018)

    Google Scholar 

  66. S. Deng, V. Tjoa, H.M. Fan, H.R. Tan, D.C. Sayle et al., Reduced graphene oxide conjugated Cu2O nanowire mesocrystals for high-performance NO2 gas sensor. J. Am. Chem. Soc. 134, 4905–4917 (2012)

    Google Scholar 

  67. J. Khanderi, C. Contiu, J. Engstler, R.C. Hoffmann, J.J. Schneider et al., Binary [Cu 2 O/MWCNT] and ternary [Cu 2 O/ZnO/MWCNT] nanocomposites: formation, characterization and catalytic performance in partial ethanol oxidation. Nanoscale 3, 1102–1112 (2011)

    ADS  Google Scholar 

  68. T. Aditya, J. Jana, A. Pal, T. Pal, One-pot fabrication of perforated graphitic carbon nitride nanosheets decorated with copper oxide by controlled ammonia and sulfur trioxide release for enhanced catalytic activity. ACS Omega 3, 9318–9332 (2018)

    Google Scholar 

  69. G. Tai, T. Zeng, J. Yu, J. Zhou, Y. You et al., Fast and large-area growth of uniform MoS 2 monolayers on molybdenum foils. Nanoscale 8, 2234–2241 (2016)

    ADS  Google Scholar 

Download references

Funding

All the authors have no relevant financial or non-financial interests to disclose. All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. All the authors have no financial or proprietary interests in any material discussed in this article.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Mohammad Ali Abdelkareem or Hussain Alawadhi.

Ethics declarations

Conflict of interest

All the authors have no competing interests to declare that are relevant to the content of this article. The results embodied in the paper are original. The paper has neither been published elsewhere nor submitted to any other journal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1467 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, N., Abdelkareem, M.A., Alawadhi, H. et al. Cu2O nanoparticles decorated with MoS2 sheets for electrochemical reduction of CO2 with enhanced efficiency. Appl. Phys. A 128, 131 (2022). https://doi.org/10.1007/s00339-021-05230-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05230-0

Keywords

Navigation