Skip to main content
Log in

A novel method for preparation of SiC/SiO2 nanocables and photoluminescence performance study

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Herein, a novel and catalyst-free method for preparation of SiC/SiO2 nanocables was proposed. SiC/SiO2 nanocables were successfully prepared from expanded graphite and rice husk ash via carbon thermal reduction. The results suggest that the reaction temperature and weight ratio of raw materials had influence on the morphology and yield of the product. As the weight ratio of expanded graphite to rice husk ash increased, the content of nanowires was gradually enhanced, while the yield of SiC first increased, and then, decreased. The products with good morphology and yield were obtained at the optimum temperature of 1400 °C and weight ratio of 1:1. The nanocable growth followed the vapor–liquid–solid (V–L–S) model and a nanocable growth mechanism using the thermodynamics of chemical reaction have been proposed. Also, compared with bulk SiC, the photoluminescence spectra of the as-prepared nanocables showed obvious blue shift, which indicates a promising application prospect in the field of optical devices. This study provides a new route for the industrial production of SiC/SiO2 nanocables which can widen their practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets supporting the conclusions of this work are included within the article.

References

  1. D. Liu, Y. Gao, J. Liu, K. Li, F. Liu, Y. Wang, L. An, J. Eur. Ceram. Soc. 36, 2051 (2016)

    Article  Google Scholar 

  2. Y. Zhang, K. Suenaga, C. Colliex, S. Iijima, Science 281, 973 (1998)

    Article  ADS  Google Scholar 

  3. M. Zhang, Z. Li, T. Wang, S. Ding, G. Song, J. Zhao, A. Meng, H. Yu, Q. Li, Chem. Eng. J. 362, 619–627 (2019)

    Article  Google Scholar 

  4. M. Zhang, H. Lin, S. Ding, T. Wang, Z. Li, A. Meng, Q. Li, Y. Lin, Compos. B. Eng. 179, 107525 (2019)

    Article  Google Scholar 

  5. M. Zhang, J. Zhao, Z. Li, S. Ding, Y. Wang, G. Qiu, A. Meng, Q. Li, A.C.S. Sustain, Chem. Eng. 6, 3596–3603 (2018)

    Google Scholar 

  6. J.P. Alper, S. Wang, F. Rossi, G. Salviati, N. Yiu, C. Carraro, R. Maboudian, Nano Lett. 14, 1843–1847 (2014)

    Article  ADS  Google Scholar 

  7. Y. Cheng, P. Hu, S. Zhou, L. Yan, B. Sun, X. Zhang, W. Han, Carbon 132, 430–443 (2018)

    Article  Google Scholar 

  8. K. Zekentes, K. Rogdakis, J. Phys. D 44, 133001 (2011)

    Article  ADS  Google Scholar 

  9. J.Y. Hao, Y.Y. Wang, X.L. Tong, G.Q. Jin, X.Y. Guo, Catal. Today 212, 220–224 (2013)

    Article  Google Scholar 

  10. L.C. Yi, K.Y. Cheong, Physica E Low Dimens. Syst. Nanostruct. 42, 1338–1342 (2010)

    Article  ADS  Google Scholar 

  11. K. Wang, J.J. Chen, Z.M. Zeng, J. Tarr, W.L. Zhou, Y. Zhang, Y.F. Yan, C.S. Jiang, J. Pern, A. Mascarenhas, Appl. Phys. Lett. 96, 455 (2010)

    Google Scholar 

  12. H. Cui, L. Gong, Y. Sun, G.Z. Yang, C.X. Wang, CrystEngComm 13, 1416–1421 (2011)

    Article  Google Scholar 

  13. Z. Shen, J. Chen, B. Li, G. Li, X. Hou, J. Mater. Sci. 54, 12450–12462 (2019)

    Article  ADS  Google Scholar 

  14. J. Zhang, J. Chen, L. Xin, M. Wang, Mater. Sci. Eng. B 179, 6–11 (2014)

    Article  Google Scholar 

  15. A. Cacchioli, F. Ravanetti, R. Alinovi, S. Pinelli, F. Rossi, M. Negri, E. Bedogni, M. Campanini, M. Galetti, M. Goldoni, P. Lagonegro, R. Alfieri, F. Bigi, G. Salviati, Nano Lett. 14, 4368–4375 (2014)

    Article  ADS  Google Scholar 

  16. G.Y. Li, X.D. Li, H. Wang, L. Lin, Solid State Sci. 11, 2167–2172 (2009)

    Article  ADS  Google Scholar 

  17. W. Feng, J.T. Ma, D.S. Ai, W.Y. Yang, X.P. Lin, Adv. Mat. Res. 465, 182–185 (2012)

    Google Scholar 

  18. J. Dai, J. Sha, Z. Zhang, J. Shao, Y. Zu, M. Lei, Cryst. Eng. Comm. 19, 6540–6546 (2017)

    Article  Google Scholar 

  19. M. Bechelany, A. Brioude, P. Stadelmann, G. Ferro, D. Cornu, P. Miele, Adv. Funct. Mater. 17, 3251–3257 (2007)

    Article  Google Scholar 

  20. J. Zhang, W. Li, Q. Jia, L. Lin, J. Huang, S. Zhang, Ceram. Int. 41, 12614–12620 (2015)

    Article  Google Scholar 

  21. S.M. Kahar, C.H. Voon, B.Y. Lim, S.C.B. Gopinath, T.T. Seng, Appl. Phys. A 126, 739 (2020)

    Article  ADS  Google Scholar 

  22. K.F. Cai, A.X. Zhang, J.L. Yin, Nanotechnology 18, 485601–485606 (2007)

    Article  ADS  Google Scholar 

  23. G.W. Meng, L.D. Zhang, C.M. Mo, S.Y. Zhang, Y. Qin, S.P. Feng, H.J. Li, J. Mater. Res. 9, 2533–2538 (1998)

    Article  ADS  Google Scholar 

  24. Y. Ryu, Y. Tak, K. Yong, Nanotechnology 16, 370–374 (2005)

    Article  ADS  Google Scholar 

  25. C.S. Wang, J.L. Zhang, A.L. Meng, M. Zhang, Z.J. Li, Physica E Low Dimens. Syst. Nanostruct. 39, 128 (2007)

    Article  ADS  Google Scholar 

  26. P. Krawczyk, Chem. Eng. J. 172, 1096–1102 (2011)

    Article  Google Scholar 

  27. S. Chandrasekhar, K.G. Satyanarayana, P.N. Pramada, P. Raghavan, T.N. Gupta, J. Mater. Sci. 38, 3159–3168 (2003)

    Article  ADS  Google Scholar 

  28. R. Pode, Renew. Sust. Energ. Rev. 53, 1468–1485 (2016)

    Article  Google Scholar 

  29. R.V. Krishnarao, M.M. Godkhindi, Ceram. Int. 18, 243–249 (1992)

    Article  Google Scholar 

  30. Z. Hui, X. Li, H. Fei, Z. Dong, K. He, Carbon 99, 174–185 (2016)

    Article  Google Scholar 

  31. J.W. Kim, S.W. Myoung, H.C. Kim, J.H. Lee, Y.G. Jung, C.Y. Jo, Mater. Sci. Eng. A 434, 171–177 (2006)

    Article  Google Scholar 

  32. W.S. Seo, K. Koumoto, S. Aria, J. Am. Ceram. Soc. 81, 1255–1261 (2010)

    Article  Google Scholar 

  33. M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele, Adv. Mater. 17, 939–943 (2007)

    Google Scholar 

  34. S.L. Zhang, B.F. Zhu, F. Huang, Y. Yan, E.Y. Shang, S. Fan, W. Han, Solid State Commun. 111, 647–651 (1999)

    Article  ADS  Google Scholar 

  35. B. Li, R. Wu, Y. Pan, L. Ling, J. Alloys Compd. 462, 446–451 (2008)

    Article  Google Scholar 

  36. J. Chen, W. Tang, L. Xin, S. Qiang, Appl. Phys. A 102, 213–217 (2011)

    Article  ADS  Google Scholar 

  37. Z. Dong, J. Meng, H. Zhu, G. Yuan, Y. Cong, J. Zhang, X. Li, A. Westwood, Ceram. Int. 43, 11006–11014 (2017)

    Article  Google Scholar 

  38. B.C. Kang, S.B. Lee, J.H. Boo, Thin Solid Films 464, 215–219 (2004)

    Article  ADS  Google Scholar 

  39. X. Qiang, H. Li, Y. Zhang, T. Song, J. Wei, Mater. Lett. 107, 315–317 (2013)

    Article  Google Scholar 

  40. P. Kang, B. Zhang, G. Wu, H. Gou, G. Chen, L. Jiang, S. Mula, J. Alloys Compd. 604, 304–308 (2014)

    Article  Google Scholar 

  41. X. Li, G. Zhang, R. Tronstad, O. Ostrovski, Ceram. Int. 42, 5668–5676 (2016)

    Article  Google Scholar 

  42. M. Patel, A. Karera, J. Mater. Sci. Lett. 8, 955–956 (1989)

    Article  Google Scholar 

  43. M. Lodhe, A. Selvam, A. Udayakumar, M. Balasubramanian, Ceram. Int. 42, 2393–2401 (2016)

    Article  Google Scholar 

  44. X.F. Zhang, Z. Chen, F. Yi, J. Qiu, J. Yao, A.C.S. Sustain, Chem. Eng. 6, 1068–1073 (2018)

    Google Scholar 

  45. J.P. Chen, Q. Kong, Z. Liu, Z. Bi, H. Jia, G. Song, L. Xie, S. Zhang, C. Chen, A.C.S. Sustain, Chem. Eng. 7, 19027–19033 (2019)

    Google Scholar 

  46. R. Wu, B. Zha, L. Wang, K. Zhou, Y. Pan, Phys. Status Solidi A 209, 553–558 (2012)

    Article  ADS  Google Scholar 

  47. R.W. Day, M.N. Mankin, R. Gao, Y.S. No, S.K. Kim, D.C. Bell, H.G. Park, C.M. Lieber, Nat. Nanotechnol. 10, 345–352 (2015)

    Article  ADS  Google Scholar 

  48. K. Senthil, K. Yong, Mater. Chem. Phys. 112, 88–93 (2008)

    Article  Google Scholar 

  49. S.Z. Deng, Z.B. Li, W.L. Wang, N.S. Xu, J. Zhou, X.G. Zheng, H.T. Xu, J. Chen, J.C. She, Appl. Phys. Lett. 89, 23118–23120 (2006)

    Article  Google Scholar 

  50. F. Wang, X. Qin, D. Zhu, Y. Meng, L. Yang, L. Sun, Y. Ming, Mat Sci Semicon Proc 29, 155–160 (2015)

    Article  Google Scholar 

  51. W.S. Seo, K. Koumoto, S. Aria, J. Am. Ceram. Soc. 83, 2584–2592 (2010)

    Article  Google Scholar 

  52. J. Liang, W. Guo, J. Liu, H. Qin, P. Gao, H. Xiao, J. Alloys Compd. 797, 101–109 (2019)

    Article  Google Scholar 

  53. X. Fu, D. Wang, Appl. Surf. Sci. 493, 497–505 (2019)

    Article  ADS  Google Scholar 

  54. J. Fan, H. Li, W. Jing, X. Min, Appl. Phys. Lett. 101, 131906 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leping Dang.

Ethics declarations

Conflicts of interest

Authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, G., Su, G., Wang, W. et al. A novel method for preparation of SiC/SiO2 nanocables and photoluminescence performance study. Appl. Phys. A 128, 72 (2022). https://doi.org/10.1007/s00339-021-05209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05209-x

Keywords

Navigation