Skip to main content
Log in

Role of Al2O3 in Al2O3–Bi2O3–P2O5 glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Research on ternary Al2O3–P2O5–Bi2O3 glasses had been achieved. The changes in density and ultrasonic velocities were used to determine the elastic moduli and Debye temperature of the glasses. The investigated ultrasonic parameters were correlated with the structural variations represented by the FTIR spectra to examine the function of Al2O3 in the network of the explored glasses. It was found that the ultrasonic features are Al2O3 dependent. Inspections of FTIR spectra point that Al2O3 is preferably inserted into the phosphate network forming (AlO4) units, while Bi2O3 accesses the network as (BiO6) units merely. Moreover, the variations of the structure and the elastic moduli were inferred according to the oscillations of aluminates, bismuthate, and phosphate structural units on one side and the substitution of low-bond strength Bi2O3 via high-bond strength Al2O3. The analysis reveals the former role of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Maeder, Review of Bi2O3 based glasses for electronics and related applications. Int. Mater. Rev. 58, 3–40 (2013)

    Article  Google Scholar 

  2. V. Dimitrov, Y. Dimitriev, A. Montenero, IR spectra and structure of V2O5-GeO2-Bi2O3 glasses. J. Non-Cryst. Solids 180, 51–57 (1994)

    Article  ADS  Google Scholar 

  3. Y.B. Saddeek, M.A. Kaid, M.R. Ebeid, FTIR and physical features of Al2O3–La2O3–P2O5–PbO glasses. J. Non-Cryst. Solids 387, 30–35 (2014)

    Article  ADS  Google Scholar 

  4. L. Montagne, G. Palavit, G. Mairesse, 31P MAS NMR and FT-IR analysis of (50–x/2) Na2O xBi2O3 (50–x/2) P2O5 glasses. Phys. Chem. Glasses 37(5), 206–211 (1996)

    Google Scholar 

  5. G. El-Damrawi, A.K. Hassan, A. Shahboub, Characteristic studies on Ag2O-Al2O3-P2O5 glasses and glass ceramics. Mater. Sci. Eng. B 264, 114957 (2021)

    Article  Google Scholar 

  6. A. Kishioka, Glass formation in the Li2O–TiO2–P2O5, MgO–TiO2–P2O5, and CaO–TiO2–P2O5. Bull. Chem. Soc. Jpn 51, 2559–2561 (1978)

    Article  Google Scholar 

  7. B.S. Bae, M.C. Weinberg, Chemical durability of copper phosphate glasses. Glass Technol. 35, 83–88 (1994)

    Google Scholar 

  8. A. Shaim, M. Et-tabirou, L. Montagne, G. Palavit, Role of bismuth and titanium in Na2O–Bi2O3–TiO2–P2O5 glasses and a model of structural units. Mater. Res. Bul. 37, 2459–2466 (2002)

    Article  Google Scholar 

  9. Y.B. Saddeek, G.Y. Mohamed, H. Shokry Hassan, A.M.A. Mostafa, G. Abdelfadeel, Effect of gamma irradiation on the FTIR of cement kiln dust–bismuth borate glasses. J. Non-Cryst. Solids 419, 110–117 (2015)

    Article  ADS  Google Scholar 

  10. H.O. Tekin, E.E. Altunsoy, E. Kavaz, M.I. Sayyed, O. Agar, M. Kamislioglu, performance of boron phosphate glasses for diagnostic radiology facilities. Results Phys. 12, 1457–1464 (2019)

    Article  ADS  Google Scholar 

  11. A. Pan, A. Ghosh, A new family of lead–bismuthate glass with a large transmitting window. J. Non-Cryst. Solids 271, 157–161 (2000)

    Article  ADS  Google Scholar 

  12. W.H. Dumbaugh, Heavy metal oxide glasses containing Bi2O3. Phys. Chem. Glasses 27, 119–123 (1986)

    Google Scholar 

  13. N. Sugimoto, Ultrafast optical switches and wavelength division multiplexing (WDM) amplifiers based on bismuth oxide glasses. J. Am. Ceram. Soc. 85, 1083–1088 (2002)

    Article  Google Scholar 

  14. C.-Y. Wang, Hu. Guan-Qin, Z.-J. Zhang, B.-Q. Liu, L.-L. Zhu, H. Wang, H.-H. Chen, Ke. Yang, J.-T. Zhao, Preparation and characterization of Bi2O3–SiO2–Al2O3 based glasses of good transparency with high Bi2O3 content. J. Non-Cryst. Solids 363, 84–88 (2013)

    Article  ADS  Google Scholar 

  15. S. Daviero, L. Montagne, G. Palavit, G. Mairesse, S. Belin, V. Briois, EXAFS, XANES and 31P double-quantum MAS-NMR of (50–x/2)Na2O–xBi2O3–(50–x/2)P2O5 glasses. J. Phys. Chem. Solids 64, 253–260 (2003)

    Article  ADS  Google Scholar 

  16. G. El-Damrawi, A. Hassan, A. Shahboub, Structural studies on silver aluminophosphate glasses and glass ceramics. Am. J. Mod. Phys. Appl. 5, 37–42 (2018)

    Google Scholar 

  17. J.A. Sampaio, M.L. Baesso, S. Gama, A.A. Coelho, J.A. Eiras, I.A. Santos, Rare earth doping effect on the elastic moduli of low silica calcium aluminosilicate glasses. J. Non-Cryst. solids 304, 293–298 (2002)

    Article  ADS  Google Scholar 

  18. A.N. Tiwari, E.C. Subbarao, Bismuth phosphate glasses. J. Am. Ceram. Soc. 53, 258–261 (1970)

    Article  Google Scholar 

  19. V. Dimitrov, T. Komatsu, Optical basicity and chemical bonding of Bi2O3 containing glasses. J. Non-Cryst. Solids 382, 18–23 (2013)

    Article  ADS  Google Scholar 

  20. I.M.G. Dos Santos, R.C.M. Moreira, A.G. De Souza, R. Lebullenger, A.C. Hernandes, E.R. Leite, C.A. Paskocimas, E. Longo, Ceramic crucibles: a new alternative for melting of PbO-BiO1.5-GaO1.5 glasses. J. Non-Cryst. Solids 319, 304–310 (2003)

    Article  ADS  Google Scholar 

  21. N. Sawangboon, A. Nizamutdinova, T. Uesbeck, R. Limbach, E. Meechoowas, K. Tapasa, D. Moncke, L. Wondraczek, E.I. Kamitsos, L. van Wüllen, D.S. Brauer, Modification of silicophosphate glass composition, structure, and properties via crucible material and melting conditions. Int. J. Appl. Glass Sci. 11, 46–57 (2020)

    Article  Google Scholar 

  22. B. Stuart, Infrared Spectroscopy: Fundamentals and Applications (Wiley, 2004)

    Book  Google Scholar 

  23. Md. Rafiqul Ahsan, M. Golam Mortuza, Infrared spectra of xCaO(1–x−z)SiO2zP2O5 glasses. J. Non-Cryst. Solids 351, 2333–2340 (2005)

    Article  ADS  Google Scholar 

  24. M. Szumera, I. Waclawska, W. Mozgawa, M. Sitarz, Spectroscopic study of biologically active glasses. J. Mol. Struct. 744–747, 609–614 (2005)

    Article  ADS  Google Scholar 

  25. M. Elisa, C. Grigorescu, I. Vasiliu, M. Bulinski, V. Kuncser, D. Predoi, G. Filoti, A. Meghea, N. Iftimie, M. Giurginca, C. Onose, Optical characterization of the phosphate glasses containing pair transition ions. Opt. Quant. Electron. 39, 523–531 (2007)

    Article  Google Scholar 

  26. V. Sudarsan, R. Mishra, S.K. Kulshreshth, Thermal and structural studies on TeO2 substituted (PbO)0.5(P2O5)0.5 glasses. J. Non-Cryst. Solids 342, 160–165 (2004)

    Article  ADS  Google Scholar 

  27. E. De Almeida, J. De Paiva, A. Sombra, Infrared and complex dielectric function studies of LiNbO3 in niobate glass-ceramics. J. Mater. Sci. 35, 1555–1559 (2000)

    Article  ADS  Google Scholar 

  28. M. Andrei, Efimov, IR fundamental spectra and structure of pyrophosphate glasses along the 2ZnO·P2O5–2Me2O·P2O5 join (Me being Na and Li). J. Non-Cryst. Solids 209, 209–226 (1997)

    Article  Google Scholar 

  29. G. Le Saoût, P. Simon, F. Fayon, A. Blin, Y. Vaills, Raman and infrared study of (PbO)x(P2O5)1x glasses. J. Ram Spectrosc. 33, 740–746 (2002)

    ADS  Google Scholar 

  30. L. Hwa, S. Hwang, L. Liu, Infrared and Raman spectra of calcium alumino–silicate glasses. J. Non-Cryst. Solids 238, 193–197 (1998)

    Article  ADS  Google Scholar 

  31. T. Satyanarayana, T. Kalpana, V. Ravi Kumar, N. Veeraiah, Role of Al coordination in barium phosphate glasses on the emission features of Ho3+ ion in the visible and IR spectral ranges. J. Lumin. 130, 498–506 (2010)

    Article  Google Scholar 

  32. M. Laourayed, M. El Moudane, M. Khachani, M. Boudalia, A. Guenbour, A. Bellaouchou, M. Tabyaoui, Effect of the Bi2O3 on the thermal, structural and chemical durability of some bismuth niobium phosphate glasses. Materialstoday Proc. 13, 974–981 (2019)

    Article  Google Scholar 

  33. Y. Saddeek, Network structure of molybdenum lead phosphate glasses: Infrared spectra and constants of elasticity. Phys. B 406, 562–566 (2011)

    Article  ADS  Google Scholar 

  34. J. Jirak, L. Koudelka, J. Pospısil, P. Mosner, L. Montagne, L. Delevoye, Study of structure and properties of ZnO–Bi2O3–P2O5 glasses. J. Mater. Sci. 42, 8592–8598 (2007)

    Article  ADS  Google Scholar 

  35. N.W. Grimes, R.W. Grimes, Dieletric polarizability of ions and the corresponding effective number of electrons. J. Phys. Condens. Matter 10, 3029–3034 (1998)

    Article  ADS  Google Scholar 

  36. H. Doweidar, Y. Moustafa, K. El-Egili, I. Abbas, Infrared spectra of Fe2O3–PbO–P2O5 glasses. Vib. Spectrosc. 37, 91–96 (2005)

    Article  Google Scholar 

  37. A. Higazy, B. Bridge, Elastic constants and structure of the vitreous system Co3O4-P2O5. J. Non-Cryst. Solids 72, 81–108 (1985)

    Article  ADS  Google Scholar 

  38. R. Brow, C. Click, T. Alam, Modifier coordination and phosphate glass networks. J. Non-Cryst. Solids 274, 9–16 (2000)

    Article  ADS  Google Scholar 

  39. D. Lide, CRC Handbook of Chemistry and Physics, 84th edn. (CRC Press, Boca Raton, 2004)

    Google Scholar 

  40. Y.B. Saddeek, A.A. El-Maaref, M.G. Moustafa, M.M. El-Okr, A.A. Showahy, A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er2O3. J. Mater. Sci.-Mater. Electron. 29, 9994–10007 (2018)

    Article  Google Scholar 

  41. B.O. El-bashir, M.I. Sayyed, M.H.M. Zaid, K.A. Matori, Comprehensive study on physical, elastic and shielding properties of ternary BaO-Bi2O3-P2O5 glasses as a potent radiation shielding material. J. Non-Cryst. Solids 468, 92–99 (2017)

    Article  ADS  Google Scholar 

  42. Y. Saddeek, Structural and acoustical studies of lead sodium borate glasses. J. Alloy. Compd. 467(1–2), 14–21 (2009)

    Article  Google Scholar 

  43. H. Doweidar, Y.B. Saddeek, FTIR and ultrasonic investigations on modified bismuth borate glasses. J. Non-Cryst. Solids 355, 348–354 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to the Deanship of Scientific Research, Majmaah University, Saudi Arabia, for funding this research work under Grant (R-2021-244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser B. Saddeek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddeek, Y.B., El-Denglawey, A. & Doweidar, H. Role of Al2O3 in Al2O3–Bi2O3–P2O5 glasses. Appl. Phys. A 127, 868 (2021). https://doi.org/10.1007/s00339-021-05017-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05017-3

Keywords

Navigation