Skip to main content
Log in

A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er2O3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, the radiative parameters were acquired from the UV absorption spectra and the luminescence spectra of Er3+ ions doped Er2O3–Al2O3–Na2O–P2O5 glasses. The intensity of each absorption spectrum was utilized to deduce the radiative parameters and the parameters (Ω2, Ω4 and Ω6) of Judd–Ofelt theory. The FTIR and the elastic moduli of the quaternary glasses are also investigated. Analysis of the FTIR suggested that the presence of Er3+ ions created bridging oxygens and polymerized the local structure around atoms. This procedure manifested itself from decreasing the bond length of O–P and increasing the O/P ratio. The polymerization of the phosphate structure increased the ultrasonic velocity and the rigidity of the network. The electrical parameters of the phosphate glasses, such as the frequency and temperature dependence AC conductivity, dielectric loss and dielectric modulus were carried out. The Er3+ ions affected the carrier mobility by decreasing the electrical conductivity and increasing the activation energy. In addition, the frequency and temperature dependence of the dielectric modulus exhibited a Debye-type relaxation behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. N. Effendy, Z.A. Wahab, H.M. Kamari, K.A. Matori, S.H. Ab Aziz, M.H. Zaid, Structural and optical properties of Er3+-doped willemiteglass-ceramics from waste materials. Optik 127, 11698–11705 (2016)

    CAS  Google Scholar 

  2. A. Miguel, R. Morea, M.A. Arriandiaga, M. Hernandez, F. Ferrer, C. Domingo, J. Fernandez-Navarro, J. Gonzalo, J. Fernandez, R. Balda, Structural, optical and spectroscopic properties of Er3+-doped TeO2-ZnO-ZnF2 glass-ceramics. J. Eur. Ceram. Soc. 34, 3959–3968 (2014)

    CAS  Google Scholar 

  3. M. Azlan, M.K. Halimah, H. Sidek, Linear and nonlinear optical properties of erbium doped zinc borotellurite glass system. J. Lumin. 181, 400–406 (2017)

    CAS  Google Scholar 

  4. C. Chen, R. He, Y. Tan, B. Wang, S. Akhmadaliev, S. Zhou, J. Vázquez de Aldana, L. Hu, F. Chen, Optical ridge waveguides in Er3+/Yb3+ co-doped phosphate glass produced by ion irradiation combined with femtosecond laser ablation for guided-wave green and red upconversion emissions. Opt. Mater. 51, 185–189 (2016)

    CAS  Google Scholar 

  5. P. Nandi, G. Jose, C. Jayakrishnan, S. Debbarma, K. Chalapathi, K. Alti, A.K. Dharmadhikari, J.A. Dharmadhikari, D. Mathur, Femtosecond laser written channel waveguides in tellurite glass. Opt. Express 14, 12145–12150 (2006)

    CAS  Google Scholar 

  6. A. Miguel, R. Morea, J. Gonzalo, M.A. Arriandiaga, J. Fernandez, R. Balda, Near-infrared emission and upconversion in Er3+-doped TeO2–ZnO–ZnF2 glasses. J. Lumin. 140, 38–44 (2013)

    CAS  Google Scholar 

  7. Y.C. Ratnakaram, N.V. Srihari, A.Vijaya Kumar, D. Thirupathi Naidu, R.P.S. Chakradhar, Optical absorption and photoluminescence properties of Nd3+ doped mixed alkali phosphate glasses-spectroscopic investigations. Spectrochim. Acta A 72, 171–177 (2009)

    CAS  Google Scholar 

  8. F. Zhang, Z. Bi, A. Huang, Z. Xiao, Luminescence and Judd–Ofelt analysis of the Pr3+ doped fluorotellurite glass. J. Lumin. 160, 85 (2015)

    Google Scholar 

  9. C. Kesavulu, Ch Basavapoornima, C. Dwaraka Viswanath, C.K. Jayasankar, Structural and NIR to visible upconversion properties of Er3+-doped LaPO4 phosphors. J. Lumin. 171, 51–57 (2016)

    CAS  Google Scholar 

  10. N. Kaur, A. Khanna, M. Gónzález-Barriuso, F. González, B. Chen, Effects of Al3+, W6+, Nb5+ and Pb2+ on the structure and properties of borotellurite glasses. J. Non-Cryst. Solids 429, 153 (2015)

    CAS  Google Scholar 

  11. Y. Saddeek, Network structure of molybdenum lead phosphate glasses: infrared spectra and constants of elasticity. Phys. B 406, 562–566 (2011)

    CAS  Google Scholar 

  12. Y. Saddeek, A. El-Maaref, K. Aly, M. ElOkr, A. Showahy, Investigations on spectroscopic and elasticity studies of Nd2O3 doped CANP phosphate glasses. J. Alloys Compd. 694, 325–332 (2017)

    CAS  Google Scholar 

  13. B. Denker, B. Galagan, V. Kamynin, A. Kurkov, Y. Sadovnikova, S. Semenov, S. Sverchkov, V. Velmiskin, E. Dianov, Composite laser fiber with Yb, Er co-doped phosphate glass core and silica cladding. Laser Phys. Lett. 10, 055109 (2013)

    Google Scholar 

  14. K. Brahmachary, D. Rajesh, S. Babu, Y.C. Ratnakaram, Investigations on spectroscopic properties of Pr3+ and Nd3+ doped zinc-alumino-sodium-phosphate (ZANP) glasses. J. Mol. Struct. 1064, 6–14 (2014)

    CAS  Google Scholar 

  15. D.M. Wu, A. García-Etxarri, A. Salleo, J.A. Dionne, Plasmon-enhanced upconversion. J. Phys. Chem. Lett. 5, 4020–4031 (2014)

    CAS  Google Scholar 

  16. H. Lin, S. Jiang, J. Wu, F. Song, N. Peyghambarian, E.Y.B. Pun, Er3+ doped Na2O–Nb2O5–TeO2 glasses for optical waveguide laser and amplifier. J. Phys. D 36, 812–817 (2003)

    CAS  Google Scholar 

  17. K. Venkata Krishnaiah, J. Marques-Hueso, K. Suresh, G. Venkataiah, B.S. Richards, C.K. Jayasankar, Spectroscopy and near infrared upconversion of Er3+-doped TZNT glasses. J. Lumin. 169, 270–276 (2016)

    CAS  Google Scholar 

  18. A.F. Obaton, C. Labbe´, P. Le Boulanger, B. Elouadi, G. Boulon, Excited state absorption in Yb3+-Er3+-codoped phosphate glasses (ZnO–Al2O3–La2O3–P2O5) around the 4I13/24I15/2 emission spectral range. Spectrochim. Acta A 55, 263–271 (1999)

    Google Scholar 

  19. G.S. Ofelt, Intensities of crystal spectra of rare earth ions. J. Chem. Phys. 37, 511 (1962)

    CAS  Google Scholar 

  20. B.R. Judd, Optical absorption intensities of rare-earth ions. Phys. Rev. 127, 750 (1962)

    CAS  Google Scholar 

  21. B.M. Walsh, in Judd-Ofelt Theory: Principles and Practices, ed. by B. Di Bartolo, O. Forte. Advances in Spectroscopy for Lasers and Sensing, (Springer, Dordrecht, 2006), pp. 403–433

    Google Scholar 

  22. J. Jiménez, Temperature dependence of Cu+ luminescence in barium-phosphate glasses: effect of rare-earth ions (Sm3+, Nd3+) and correlation with glass structure. J. Non-Cryst. Solids 432, 227–231 (2016)

    Google Scholar 

  23. M. Kubliha, V. Trnovcova, V. Labas, J. Psota, J. Pedlikova, J. Podolinciakova, Electrical and dielectric properties of doped TeO2·PbCl2·PbF2 glasses, prepared in Au or Pt crucibles. J. Optoelectron. Adv. Mater. 13, 1493–1497 (2011)

    CAS  Google Scholar 

  24. H. Liu, Y. Lu, Y. Qu, H. Lu, Y. Yue, Effect of the content of Al2O3 on structure and properties of calcium-phosphate glasses: two experimental case studies. J. Non-Cryst. Solids 450, 95–102 (2016)

    CAS  Google Scholar 

  25. Y. Saddeek, M.A. Kaid, M.R. Ebeid, FTIR and physical features of Al2O3–La2O3–P2O5–PbO glasses. J. Non-Cryst. Solids 387, 30–35 (2014)

    CAS  Google Scholar 

  26. N. Vedeanu, D.A. Magdas, R. Stefan, Structural modifications induced by addition of copper oxide to lead–phosphate glasses. J. Non-Cryst. Solids 358, 3170–3174 (2012)

    CAS  Google Scholar 

  27. M. Sendova, J. Jiménez, C. Honaman, Rare earth-dependent trend of the glass transition activation energy of doped phosphate glasses: calorimetric analysis. J. Non-Cryst. Solids 450, 18–22 (2016)

    CAS  Google Scholar 

  28. I. Soltani, S. Hraiech, K. Horchani-Naifer, J. Massera, L. Petit, M. Férid, Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticles. J. Non-Cryst. Solids 438, 67–73 (2016)

    CAS  Google Scholar 

  29. V. Sudarsan, R. Mishra, S.K. Kulshreshtha, Thermal and structural studies on TeO2 substituted (PbO)0.5(P2O5)0.5 glasses. J. Non-Cryst. Solids 342, 160–165 (2004)

    CAS  Google Scholar 

  30. R. Marzke, S. Boucher, G. Wolf, J. Piwowarczyk, W. Petuskey, Lanthanum phosphate calcium aluminate glasses: 27Al and 31P NMR spectroscopy. J. Eur. Ceram. Soc. 28, 2421–2431 (2008)

    CAS  Google Scholar 

  31. T. Satyanarayana, T. Kalpana, V. Ravi Kumar, N. Veeraiah, Role of Al coordination in barium phosphate glasses on the emission features of Ho3+ ion in the visible and IR spectral ranges. J. Lumin. 130, 498–506 (2010)

    CAS  Google Scholar 

  32. E.E. Metwalli, R.K. Brow, F.S. Stover, Cation effects on anion distributions in aluminophosphate glasses. J. Am. Ceram. Soc. 84, 1025–1032 (2001)

    CAS  Google Scholar 

  33. A.M. Abdelghany, Modeling, structural, and spectroscopic studies of cobalt-doped lithium phosphate glasses and effect of gamma irradiation. Spectrosc. Lett. 48, 623–630 (2015)

    CAS  Google Scholar 

  34. K. Bourhis, J. Massera, L. Petit, J. Koponen, A. Fargues, T. Cardinal, L. Hupa, M. Hupa, M. Dussauze, V. Rodriguez, M. Ferraris, Erbium-doped borosilicate glasses containing various amounts of P2O5 and Al2O3: influence of the silica content on the structure and thermal, physical, optical and luminescence properties. Mater. Res. Bull. 70, 47–54 (2015)

    CAS  Google Scholar 

  35. A.A. Ali, Y.S. Rammah, R. El-Mallawany, D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72–77 (2017)

    Google Scholar 

  36. P. Rajanikanth, Y. Gandhi, N. Veeraiah, Enrichment of orange emission of Er3+ ion with Sn4+ ion as sensitizer in lithium lead phosphate glass system. Opt. Mater. 48, 51–58 (2015)

    CAS  Google Scholar 

  37. G. Venkateswara Rao, N. Vijaya, A.S. Joshi, H.D. Shashikala, C.K. Jayasankar, Mechanical properties of Nd3+-doped phosphate laser glasses. Phys. Chem. Glasses 56, 81–84 (2015)

    Google Scholar 

  38. K.A. Matori, M.H.M. Zaid, S.H.A. Aziz, H.M. Kamari, Z.A. Wahab, Study of the elastic properties of (PbO)x(P2O5)1−x lead phosphate glass using an ultrasonic technique. J. Non-Cryst. Solids 361, 78–81 (2013)

    CAS  Google Scholar 

  39. B. Eraiah, M.G. Smitha, R.V. Anavekar, Elastic properties of lead-phosphate glasses doped with samarium trioxide. J. Phys. Chem. Solids 71, 153–155 (2010)

    CAS  Google Scholar 

  40. D. Souri, F. Honarvar, Z.E. Tahan, Characterization of semiconducting mixed electronic-ionic TeO2-V2O5-Ag2O glasses by employing ultrasonic measurements and Vicker’s microhardness. J. Alloys Compd. 699, 601–610 (2017)

    CAS  Google Scholar 

  41. D. Souri, Ultrasonic velocities, elastic modulus and hardness of ternary Sb-V2O5-TeO2 glasses. J. Non-Cryst. Solids 470, 112–121 (2017)

    CAS  Google Scholar 

  42. D. Souri, M. Mohammadi, H. Zaliani, Effect of antimony on the optical and physical properties of Sb-V2O5-TeO2 glasses. Electron. Mater. Lett. 10, 1103–1108 (2014)

    CAS  Google Scholar 

  43. G. Lakshminarayana, K.M. Kaky, S.O. Baki, A. Song, S. Ye, A. Lira, I.V. Kityk, M.A. Mahdi, Concentration dependent structural, thermal, and optical features of Pr3‏-doped multicomponent tellurite glasses. J. Alloys Compd. 686, 769–784 (2016)

    CAS  Google Scholar 

  44. A.A. El-Maaref, K.H.S. Shaaban, M. Abdelawwad, Y.B. Saddeek, Optical characterizations and Judd–Ofelt analysis of Dy3+ doped borosilicate glasses. Opt. Mater. 72, 169–176 (2017)

    CAS  Google Scholar 

  45. J. Amin, B. Dussardier, T. Schweizer, M. Hempstead, Spectroscopic analysis of Er3+ transitions in lithium niobate. J. Lumin. 69, 17–26 (1996)

    CAS  Google Scholar 

  46. K.V. Raju, C.N. Raju, S. Sailaja, B.S. Reddy, Judd–Ofelt analysis and photoluminescence properties of RE3+ (RE = Er & Nd): cadmium lithium boro tellurite glasses. Solid State Sci. 15, 102–109 (2013)

    CAS  Google Scholar 

  47. J.M. de Mendívil, G. Lifante, M.C. Pujol, M. Aguiló, F. Díaz, E. Cantelar, Judd–Ofelt analysis and transition probabilities of Er3+ doped KY1–x–yGdxLuy(WO4)2 crystals. J. Lumin. 165, 153–158 (2015)

    Google Scholar 

  48. G. Bilir, G. Ozen, D. Tatar, M.L. Öveçoğlu, Judd–Ofelt analysis and near infrared emission properties of the Er3+ ions in tellurite glasses containing WO3 and CdO. Opt. Commun. 284, 863–868 (2011)

    CAS  Google Scholar 

  49. E. Yousef, Er3+ ions doped tellurite glasses with high thermal stability, elasticity, absorption intensity, emission cross section and their optical application. J. Alloys Compd. 561, 234–240 (2013)

    CAS  Google Scholar 

  50. Y. Fang, L. Hu, L. Wen, M. Liao, Judd–Ofelt intensity parameters of Er3+ doped mixed alkali aluminophosphate glasses. J. Alloys Compd. 431, 246–249 (2007)

    CAS  Google Scholar 

  51. A. Okasha, A.M. Abdelghany, S. Marzouk‏, Judd–Ofelt analysis of spectroscopic properties of Sm3+ doped P2O5–SrO glasses. J. Mater. Sci.-Mater. Electron. 28, 12132–12138 (2017)

    CAS  Google Scholar 

  52. P. Loiko, E. Vilejshikova, N. Khaidukov, M. Brekhovskikh, X. Mateos, M. Aguiló, K. Yumashev, Judd–Ofelt modeling, stimulated-emission cross-sections and non-radiative relaxation in Er3+:K2YF5 crystals. J. Lumin. 180, 103–110 (2016)

    CAS  Google Scholar 

  53. M.G. Moustafa, M.Y. Hassaan, Optical and dielectric properties of transparent ZrO2-TiO2-Li2B4O7 glass system. J. Alloys Compd. 710, 312–322 (2017)

    CAS  Google Scholar 

  54. D. Lu, G. Chen, J. Pei, X. Yang, H. Xian, Effect of erbium substitution on thermoelectric properties of complex oxide Ca3Co2O6 at high temperatures. J. Rare Earths 26, 168–172 (2008)

    Google Scholar 

  55. A. Mogus-Milankovic, V. Licina, S.T. Reis, D.E. Day, Electronic relaxation in zinc iron phosphate glasses. J. Non-Cryst. Solids 353, 2659–2666 (2007)

    CAS  Google Scholar 

  56. S. Duhan, S. Sanghi, A. Agarwal, A. Sheoran, S. Rani, Dielectric properties and conductivity enhancement on heat treatment of bismuth silicate glasses containing TiO2. Phys. B 404, 1648–1654 (2009)

    CAS  Google Scholar 

  57. I. Jlassi, N. Sdiri, H. Elhouichet, Electrical conductivity and dielectric properties of MgO doped lithium phosphate glasses. J. Non-Cryst. Solids 466–467, 45–51 (2017)

    Google Scholar 

  58. V. Provenzano, L.P. Boesch, V. Volterra, C.T. Moynihan, P.B. Macedo, Electrical relaxation in Na2O·3SiO2 Glass. J. Am. Ceram. Soc. 55, 492–496 (1972)

    CAS  Google Scholar 

  59. P. Ganguly, A.K. Jha, Impedance spectroscopy analysis of Ba5NdTi3Nb7O30 ferroelcetric ceramics. Phys. B 405, 3154–3158 (2010)

    CAS  Google Scholar 

  60. R.S. Gedam, D.D. Ramteke, Electrical, dielectric and optical properties of La2O3 doped lithium borate glasses. J. Phys. Chem. Solids 74, 1039–1044 (2013)

    CAS  Google Scholar 

  61. H. Namikawa, Characterization of the diffusion process in oxide glasses based on the correlation between electric conduction and dielectric relaxation. J. Non-Cryst. Solids 18, 173–195 (1975)

    CAS  Google Scholar 

  62. B.S. Kang, S.K. Choi, Diffuse dielectric anomaly in perovskite-type ferroelectric oxides in the temperature range of 400–700 °C. J. Appl. Phys. 94, 1904–1911 (2003)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser B. Saddeek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saddeek, Y.B., El-Maaref, A.A., Moustafa, M.G. et al. A comprehensive study of electrical and optical properties of phosphate oxide-based glasses doped with Er2O3. J Mater Sci: Mater Electron 29, 9994–10007 (2018). https://doi.org/10.1007/s10854-018-9043-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-9043-y

Navigation