Skip to main content
Log in

Evaluation of structural, magnetic, optical, electrical, and humidity sensing properties of manganese-substituted zinc ferrite nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Manganese–zinc ferrite nanoparticles with composition MnyZn1-yFe2O4 (0 ≤ x ≤ 1) were synthesized using the coprecipitation technique. The formation of cubic spinel structures with average crystallite sizes less than 16 nm is confirmed by X-ray diffraction. On replacing Zn2+ ions with Mn2+ ions, compressive lattice strain is produced which lowers the lattice parameter. Thermogravimetric analysis (TGA) demonstrates superior thermal stability of ZnFe2O4 nanoparticles. The superparamagnetic nature of Mn-Zn ferrites was revealed by vibrating sample magnetometer (VSM). The specific magnetization lies between 14.6 and 21.7 emug−1. The optical bandgap energy ranges from 2.34 to 2.84 eV. With increasing Mn2+ ions, the dc electrical resistivity shows a preliminary increase followed by a steady decline. The exposure of ferrite pellets to humidity facilitates the conduction mechanism. Resistivity significantly decreases with increasing relative humidity. Among Mn-Zn ferrites, ZnFe2O4 nanoparticles possess superior humidity sensing properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The authors declare that all the data supporting the findings of this study are available within the article.

References

  1. R. Srivastava, B.C. Yadav, Ferrite materials: introduction, synthesis techniques, and applications as sensors. International Journal of Green Nanotechnology 4(2), 141–154 (2012)

    Article  Google Scholar 

  2. M. Sugimoto, The past, present, and future of ferrites. J. Am. Ceram. Soc. 82(2), 269–280 (1999)

    Article  Google Scholar 

  3. K.I. Arshak, A. Ajina, D. Egan, Development of screen-printed polymer thick film planner transformer using Mn–Zn ferrite as core material. Microelectron. J. 32(2), 113–116 (2001)

    Article  Google Scholar 

  4. K. Arshaka, K. Twomey, D. Egan, A ceramic thick film humidity sensor based on MnZn ferrite. Sensors 2(2), 50–61 (2002)

    Article  ADS  Google Scholar 

  5. R. Lebourgeois, C. Coillot, Mn–Zn ferrites for magnetic sensor in space applications. J. Appl. Phys. 103(7), 07E510 (2008)

    Article  Google Scholar 

  6. M. Singh, S.P. Sud, Mg–Mn–Al ferrites for high frequency applications. Mod. Phys. Lett. B 14(14), 531–537 (2000)

    Article  ADS  Google Scholar 

  7. B.P. Rao, K.H. Rao, K. Trinadh, O.F. Caltun, Dielectric behaviour of niobium doped Ni-Zn ferrites. J. Optoelectron. Adv. Mater. 6, 951–954 (2004)

    Google Scholar 

  8. L. Li, Y.K. Fang, Y.J. Liu, Preparation and application on antenna of soft ferrite core for wireless sensor networks. IEEE Trans. Magn. 51(11), 1–3 (2015)

    Google Scholar 

  9. Hussain, M. I., Xia, M., Akhtar, K., Nawaz, A., Sharma, S. K., & Javed, Y. (2020). Ferrite Nanoparticles for Biomedical Applications. In Magnetic Nanoheterostructures (pp. 243–265). Springer, Cham.

  10. M. Pardavi-Horvath, Microwave applications of soft ferrites. J. Magn. Magn. Mater. 215, 171–183 (2000)

    Article  ADS  Google Scholar 

  11. A. Verma, M.I. Alam, R. Chatterjee, T.C. Goel, R.G. Mendiratta, Development of a new soft ferrite core for power applications. J. Magn. Magn. Mater. 300(2), 500–505 (2006)

    Article  ADS  Google Scholar 

  12. E. Roess, Soft magnetic ferrites and applications in telecommunication and power converters. IEEE Trans. Magn. 18(6), 1529–1534 (1982)

    Article  ADS  Google Scholar 

  13. A.R. Kumar, K.V.G.R. Kumar, C.S. Chakra, K.V. Rao, Silver doped manganese–zinc–ferrite nano flowers for biomedical applications. Int. J. Emerg. Technol. Adv. Eng 5, 2250–2459 (2014)

    Google Scholar 

  14. K.S. Chou, T.K. Lee, F.J. Liu, Sensing mechanism of a porous ceramic as humidity sensor. Sens. Actuators, B Chem. 56(1–2), 106–111 (1999)

    Article  Google Scholar 

  15. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators, B Chem. 23(2–3), 135–156 (1995)

    Article  Google Scholar 

  16. V. Jeseentharani, M. George, B. Jeyaraj, A. Dayalan, K.S. Nagaraja, Synthesis of metal ferrite (MFe2O4, M= Co, Cu, Mg, Ni, Zn) nanoparticles as humidity sensor materials. J. Exp. Nanosci. 8(3), 358–370 (2013)

    Article  Google Scholar 

  17. E.R. Kumar, P.S.P. Reddy, G.S. Devi, S. Sathiyaraj, Structural, dielectric and gas sensing behavior of Mn substituted spinel MFe2O4 (M= Zn, Cu, Ni, and Co) ferrite nanoparticles. J. Magn. Magn. Mater. 398, 281–288 (2016)

    Article  ADS  Google Scholar 

  18. N.S. Chen, X.J. Yang, E.S. Liu, J.L. Huang, Reducing gas-sensing properties of ferrite compounds MFe2O4 (M= Cu, Zn, Cd and Mg). Sens. Actuators, B Chem. 66(1–3), 178–180 (2000)

    Article  Google Scholar 

  19. X. Xu, L. Xiao, N.O. Haugen, Z. Wu, Y. Jia, W. Zhong, J. Zou, High humidity response property of sol–gel synthesized ZnFe2O4 films. Mater. Lett. 213, 266–268 (2018)

    Article  Google Scholar 

  20. J. Zhang, J.M. Song, H.L. Niu, C.J. Mao, S.Y. Zhang, Y.H. Shen, ZnFe2O4 nanoparticles: Synthesis, characterization, and enhanced gas sensing property for acetone. Sens. Actuators, B Chem. 221, 55–62 (2015)

    Article  Google Scholar 

  21. X. Zhou, J. Liu, C. Wang, P. Sun, X. Hu, X. Li, G. Lu, Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sens. Actuators, B Chem. 206, 577–583 (2015)

    Article  Google Scholar 

  22. R. Cristina de Oliveira, R.A. Pontes Ribeiro, G.H. Cruvinel, R.A. CiolaAmoresi, M.H. Carvalho, A.J. Aparecido de Oliveira, E. Longo, Role of Surfaces in the Magnetic and Ozone Gas-Sensing Properties of ZnFe2O4 Nanoparticles: Theoretical and Experimental Insights. ACS Appl. Mater. Interfaces. 13(3), 4605–4617 (2021)

    Article  Google Scholar 

  23. K. Wu, J. Li, C. Zhang, Zinc ferrite based gas sensors: A review. Ceram. Int. 45(9), 11143–11157 (2019)

    Article  Google Scholar 

  24. C. Mukherjee, R. Mondal, S. Dey, S. Kumar, J. Das, Nanocrystalline CopperNickelZinc Ferrite: efficient sensing materials for ethanol and acetone at room temperature. IEEE Sens. J. 17(9), 2662–2669 (2017)

    Article  ADS  Google Scholar 

  25. K. Wu, Y. Lu, Y. Liu, Y. Liu, M. Shen, M. Debliquy, C. Zhang, Synthesis and acetone sensing properties of copper (Cu2+) substituted zinc ferrite hollow micro-nanospheres. Ceram. Int. 46(18), 28835–28843 (2020)

    Article  Google Scholar 

  26. A.V. Kadu, S.V. Jagtap, G.N. Chaudhari, Current Appl. Phys. 9(6), 1246–1251 (2009)

    Article  ADS  Google Scholar 

  27. M. Deepty, S. Ch, P.N. Ramesh, N.K. Mohan, M.S. Singh, C.L. Prajapat, D.L. Sastry, Evaluation of structural and dielectric properties of Mn2+-substituted Zn-spinel ferrite nanoparticles for gas sensor applications. Sensors and Actuators B: Chemical 316, 128127 (2020)

    Article  Google Scholar 

  28. R.R. Powar, V.D. Phadtare, V.G. Parale, S. Pathak, K.R. Sanadi, H.H. Park, D.N. Zambare, Effect of zinc substitution on magnesium ferrite nanoparticles: Structural, electrical, magnetic, and gas-sensing properties. Mater. Sci. Eng.: B 262, 114776 (2020)

    Article  Google Scholar 

  29. H. Farahani, R. Wagiran, M.N. Hamidon, Humidity sensors principle, mechanism, and fabrication technologies: a comprehensive review. Sensors 14(5), 7881–7939 (2014)

    Article  ADS  Google Scholar 

  30. Y. Jin, F. Wang, M. Carpenter, R.B. Weller, D. Tabor, S.R. Payne, The effect of indoor thermal and humidity condition on the oldest-old people’s comfort and skin condition in winter. Build. Environ. 174, 106790 (2020)

    Article  Google Scholar 

  31. Khatri, J., Sharma, N., Dahlander, P., & Koopmans, L. (2020). Effect of relative humidity on water injection technique in downsized spark ignition engines. International Journal of Engine Research, 1468087420940854.

  32. Alfaresi, B., Nawawi, Z., Malik, R. F., Anwar, K., & Nur, L. O. (2020). HUMIDITY EFFECT TO 5G PERFORMANCES UNDER PALEMBANG CHANNEL MODEL AT 28 GHZ. traffic, 5(6), 7.

  33. Albuquerque, F. B., & Shea, H. (2020, April). Effect of humidity, temperature, and elastomer material on the lifetime of silicone-based dielectric elastomer actuators under a constant DC electric field (Conference Presentation). In Electroactive Polymer Actuators and Devices (EAPAD) XXII (Vol. 11375, p. 113751E). International Society for Optics and Photonics.

  34. C. Amitrano, C. Arena, S. De Pascale, V. De Micco, Light and low relative humidity increase antioxidants content in mung bean (Vigna radiata L) Sprouts. Plants 9(9), 1093 (2020)

    Article  Google Scholar 

  35. S.S. Pati, J. Philip, in Enhancement in maghemite to hematite phase transition temperature with very low fraction of Co (II) doping. International Conference on Nanoscience, Engineer- ing and Technology (ICONSET 2011) (IEEE, 2011, November), pp. 323–325

  36. Thermally stable ferrous-doped CoFe2O4 ferromagnetic nanoparticles with high quality factor for the use in electronic devices

  37. Yashpreet, & Chudasama, B. (2020). Effect of annealing on structural and magnetic properties of manganese ferrite nanoparticles. In AIP Conference Proceedings (Vol. 2265, No. 1, p. 030179). AIP Publishing LLC.

  38. Du, S., & Li, Y. (2015). Effect of annealing on microstructure and mechanical properties of magnetron sputtered Cu thin films. Advances in Materials science and Engineering, 2015.

  39. Cullity, B. D. (1956). Elements of X-ray Diffraction. Addison-Wesley Publishing.

  40. Bharati, V. A., Patade, S. R., Bajaj, S., Parlikar, R., Keche, A. P., & Sondur, V. V. (2020, October). Structural and magnetic properties of nickel ferrite nanoparticles prepared by solution combustion method. In Journal of Physics: Conference Series (Vol. 1644, No. 1, p. 012005). IOP Publishing.

  41. T. Tatarchuk, M. Myslin, I. Mironyuk, M. Bououdina, A.T. Pędziwiatr, R. Gargula, P. Kurzydło, Synthesis, morphology, crystallite size and adsorption properties of nanostructured Mg–Zn ferrites with enhanced porous structure. J. Alloys Compounds 819, 152945 (2020)

    Article  Google Scholar 

  42. K.E. Sickafus, J.M. Wills, N.W. Grimes, Structure of spinel. J. Am. Ceram. Soc. 82(12), 3279–3292 (1999)

    Article  Google Scholar 

  43. Singh, R., & Thirupathi, G. (2017). Manganese-zinc spinel ferrite nanoparticles and ferrofluids. Magnetic Spinels-Synthesis, Properties and Applications, 140–159.

  44. C. Klein, A.R. Philpotts, Earth Materials: Introduction to Mineralogy and Petrology (Cambridge University Press, 2013)

    Google Scholar 

  45. M.M. Rashad, M.I. Nasr, Controlling the microstructure and magnetic properties of Mn-Zn ferrites nanopowders synthesized by co-precipitation method. Electron. Mater. Lett. 8(3), 325–329 (2012)

    Article  ADS  Google Scholar 

  46. M.M.L. Sonia, S. Anand, V.M. Vinosel, M.A. Janifer, S. Pauline, A. Manikandan, Effect of lattice strain on structure, morphology and magneto-dielectric properties of spinel NiGdxFe2− xO4 ferrite nano-crystallites synthesized by sol-gel route. J. Magn. Magn. Mater. 466, 238–251 (2018)

    Article  ADS  Google Scholar 

  47. R. Iyer, R. Desai, R.V. Upadhyay, Low temperature synthesis of nanosized Mn 1–x Zn x Fe 2 O 4 ferrites and their characterizations. Bull. Mater. Sci. 32(2), 141–147 (2009)

    Article  Google Scholar 

  48. N. Kumari, V. Kumar, S. Khasa, S.K. Singh, Chemical synthesis and magnetic investigations on Cr3+ substituted Zn-ferrite superparamagnetic nano-particles. Ceram. Int. 41(1), 1907–1911 (2015)

    Article  Google Scholar 

  49. R. Topkaya, A. Baykal, A. Demir, Yafet–Kittel-type magnetic order in Zn-substituted cobalt ferrite nanoparticles with uniaxial anisotropy. J. Nanopart. Res. 15(1), 1–18 (2013)

    Article  Google Scholar 

  50. R.G. Kulkarni, V.G. Panicker, Study of canted spin structure in Cu-Cd ferrites. J. Mater. Sci. 19(3), 890–894 (1984)

    Article  ADS  Google Scholar 

  51. S.D. Oberdick, A. Abdelgawad, C. Moya, S. Mesbahi-Vasey, D. Kepaptsoglou, V.K. Lazarov, S.A. Majetich, Spin canting across core/shell Fe 3 O 4/Mn x Fe 3–x O 4 nanoparticles. Sci. Rep. 8(1), 1–12 (2018)

    Article  Google Scholar 

  52. I.C. Masthoff, A. Gutsche, H. Nirschl, G. Garnweitner, Oriented attachment of ultra-small Mn (1–x) Zn x Fe 2 O 4 nanoparticles during the non-aqueous sol–gel synthesis. CrystEngComm 17(12), 2464–2470 (2015)

    Article  Google Scholar 

  53. S.E. Shirsath, B.G. Toksha, R.H. Kadam, S.M. Patange, D.R. Mane, G.S. Jangam, A. Ghasemi, Doping effect of Mn2+ on the magnetic behavior in Ni–Zn ferrite nanoparticles prepared by sol–gel auto-combustion. J. Phys. Chem. Solids 71(12), 1669–1675 (2010)

    Article  ADS  Google Scholar 

  54. Srinivasamurthy, K. M., Angadi, V. J., Kubrin, S. P., Matteppanavar, S., Sarychev, D. A., & Rudraswamy, B. (2019). 32(3), 693–704.

  55. E.C. Stoner, E.P. Wohlfarth, A mechanism of magnetic hysteresis in heterogeneous alloys Philosophical Transactions of the Royal Society of London. Series A, Math. Phys. Sci. 240(826), 599–642 (1948)

    Google Scholar 

  56. G.P. Joshi, N.S. Saxena, R. Mangal, A. Mishra, T.P. Sharma, Band gap determination of Ni-Zn ferrites. Bull. Mater. Sci. 26(4), 387–389 (2003)

    Article  Google Scholar 

  57. A. Manohar, C. Krishnamoorthi, Photocatalytic study and superparamagnetic nature of Zn-doped MgFe2O4 colloidal size nanocrystals prepared by solvothermal reflux method. J. Photochem. Photobiol., B 173, 456–465 (2017)

    Article  Google Scholar 

  58. Singh, J. P., Srivastava, R. C., & Agrawal, H. M. (2010, October). Optical behaviour of zinc ferrite nanoparticles. In AIP Conference Proceedings (Vol. 1276, No. 1, pp. 137–143). American Institute of Physics.

  59. Fontijn, W. F. J. (1998). Magneto-optical spectroscopy of spinel type ferrites in bulk materials and layered structures.

  60. Tauc, J. (Ed.). (2012). Amorphous and liquid semiconductors. Springer Science & Business Media.

  61. C. Belkhaoui, N. Mzabi, H. Smaoui, P. Daniel, Enhancing the structural, optical and electrical properties of ZnO nanopowders through (Al+ Mn) doping. Results in Physics 12, 1686–1696 (2019)

    Article  ADS  Google Scholar 

  62. M.N. Ashiq, M.F. Ehsan, M.J. Iqbal, I.H. Gul, Synthesis, structural and electrical characterization of Sb3+ substituted spinel nickel ferrite (NiSbxFe2− xO4) nanoparticles by reverse micelle technique. J. Alloy. Compd. 509(16), 5119–5126 (2011)

    Article  Google Scholar 

  63. C.S. Lakshmi, C.S. Sridhar, G. Govindraj, S. Bangarraju, D.M. Potukuchi, Structural, magnetic and dielectric investigations in antimony doped nano-phased nickel-zinc ferrites. Physica B 459, 97–104 (2015)

    Article  ADS  Google Scholar 

  64. M. El-Shabasy, DC electrical properties of Zn Ni ferrites. J. Magn. Magn. Mater. 172(1–2), 188–192 (1997)

    Article  ADS  Google Scholar 

  65. N. Chandamma, B.M. Manohara, B.S. Ujjinappa, G.J. Shankarmurthy, M.S. Kumar, Structural and electrical properties of Zinc doped Nickel ferrites nanoparticles prepared via facile combustion technique. J. Alloy. Compd. 702, 479–488 (2017)

    Article  Google Scholar 

  66. T. Nitta, S. Hayakawa, Ceramic humidity sensors. IEEE Transactions on Components, Hybrids, and Manufacturing Technology 3(2), 237–243 (1980)

    Article  Google Scholar 

  67. S. Muthurani, M. Balaji, S. Gautam, K.H. Chae, J.H. Song, D.P. Padiyan, K. Asokan, Magnetic and Humidity-Sensing Properties of Nanostructured Cu x Co1− x Fe2O4 Synthesized via Autocombustion. J. Nanosci. Nanotechnol. 11(7), 5850–5855 (2011)

    Article  Google Scholar 

  68. E. McCafferty, A.C. Zettlemoyer, Adsorption of water vapour on α-Fe 2 O 3. Discuss. Faraday Soc. 52, 239–254 (1971)

    Article  Google Scholar 

  69. N. Agmon, The grotthuss mechanism. Chem. Phys. Lett. 244(5–6), 456–462 (1995)

    Article  ADS  Google Scholar 

  70. K. Manjunatha, K.M. Srininivasamurthy, C.S. Naveen, Y.T. Ravikiran, E.I. Sitalo, S.P. Kubrin, V.J. Angadi, Observation of enhanced humidity sensing performance and structure, dielectric, optical and DC conductivity studies of scandium doped cobalt chromate. J. Mater. Sci.: Mater. Electron. 30(18), 17202–17217 (2019)

    Google Scholar 

  71. Bagum, N., Gafur, M. A., Bhuiyan, A. H., & Saha, D. K. (2010). MgCl2 doped CuxZn1− xFe2O4 ferrite humidity sensors. physica status solidi (a), 207(4), 986–992.

  72. I.C. Sathisha, K. Manjunatha, A. Bajorek, B.R. Babu, B. Chethan, T.R.K. Reddy, V.J. Angadi, Enhanced humidity sensing and magnetic properties of bismuth doped copper ferrites for humidity sensor applications. J. Alloys Compounds 848, 156577 (2020)

    Article  Google Scholar 

Download references

Funding

None to declare.

Author information

Authors and Affiliations

Authors

Contributions

Anu Rana contributed to supervision, software, validation, writing-reviewing, and editing; Nitika contributed to data curation, writing-original draft preparation, investigation, formal analysis; Vinod Kumar contributed to conceptualization, methodology, visualization, resources.

Corresponding author

Correspondence to Nitika.

Ethics declarations

Conflicts of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nitika, Rana, A. & Kumar, V. Evaluation of structural, magnetic, optical, electrical, and humidity sensing properties of manganese-substituted zinc ferrite nanoparticles. Appl. Phys. A 127, 860 (2021). https://doi.org/10.1007/s00339-021-05016-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05016-4

Keywords

Navigation