Skip to main content
Log in

Numerical investigation on keyhole collapsing and rebuilding behavior during pulsed laser beam welding of Ti6Al4V titanium alloy under various pulse frequencies

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A multi-phase and multi-physics coupling model was proposed and experimentally verified. The simulation of keyhole and weld pool dynamics was conducted during the pulsed laser beam welding (PLBW) of Ti6Al4V titanium alloy. Different pulse frequencies were employed in numerical cases to investigate the influences on thermal transfer and fluid flow behavior and the resultant weld pool dimensions. The calculation results reveal that the welding dynamics go through three stages, that is, keyhole formation/rebuilding, keyhole shrinking, and keyhole collapsing, within a typical laser pulse period. Keyhole collapsing always induces porosities in the lower weld pool, which can be non-contact with a rising-up tendency or captured by the liquid-solid interface unilaterally or multilaterally. Compensation flows are commonly observed near the concaves at keyhole shrinking stage, and then evolve to circulations between porosity and collapsed keyhole. Besides, the keyhole and weld pool show an oscillatory growth on depth values with the oscillation amplitude of keyhole being much higher. A reduced laser pulse frequency can increase the initial weld pool dimensions, obviously, while having little impact on the final welding penetration. The configuration of pulse frequency should be critical to a desirable welding formation in terms of continuity and homogeneity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. E. Akman, A. Demir, T. Canel, T. Sınmazçelik, J. Mater. Process. Technol. 209, 3705 (2009)

    Article  Google Scholar 

  2. P. Kumar, A.N. Sinha, Weld. World 63, 673 (2019)

    Article  Google Scholar 

  3. Z. Mohid, N.H. Rafai, R. Ibrahim, E.A. Rahim, Mater. Sci. Forum 882, 8 (2017)

    Article  Google Scholar 

  4. F. Caiazzo, V. Alfieri, A. Astarita, A. Squillace, G. Barbieri, Adv. Mech. Eng. 9, 168781401668554 (2016)

    Article  Google Scholar 

  5. X. Gao, J. Liu, L. Zhang, J. Zhang, Mater. Charact. 93, 136 (2014)

    Article  Google Scholar 

  6. J. Liu, X. Gao, J. Zhang, J. Mater. Eng. Perform. 25, 5109 (2016)

    Article  Google Scholar 

  7. P. Xu, Trans. Nonferrous Met. Soc. China 22, 2118 (2012)

    Article  Google Scholar 

  8. H. Heydari, M. Akbari, Infrared Phys. Techn. 106, 103267 (2020)

  9. S. Chatterjee, S.S. Mahapatra, V. Bharadwaj, B.N. Upadhyaya, K.S. Bindra, Laser Eng. 46, 111 (2020)

    Google Scholar 

  10. Y. Zhang, D. Sun, X. Gu, H. Li, Int. J. Adv. Manuf. Tech. 94, 1073 (2018)

    Article  Google Scholar 

  11. B.C. Kim, T.H. Kim, J.S. Kim, K.B. Kim, H.Y. Lee, 20th ICALEO. Congress Proceedings 92–93, 465 (2001)

    Google Scholar 

  12. T. Arai, Materialwiss. Werkstofftech. 44, 462 (2013)

    Article  Google Scholar 

  13. K.S. Kumar, Materials Today: Proceedings 2, 2256 (2015)

    Google Scholar 

  14. G. Satyanarayana, K.L. Narayana, B.N. Rao, M.S. Slobodyan, M.A. Elkin, A.S. Kiselev, Therm. Eng. 66, 210 (2019)

    Article  Google Scholar 

  15. H. Tan, Y. Zhang, Y. Liu, X. Fu, Infrared Phys. Techn. 98, 334 (2019)

    Article  ADS  Google Scholar 

  16. F. Lange, A. Artinov, M. Bachmann, M. Rethmeier, K. Hilgenberg, Procedia CIRP 74, 6792 (2018)

    Article  Google Scholar 

  17. A. Bagchi, S. Saravanan, K.G. Shanthos, G. Murugan, K. Raghukandan, Optik 146, 80 (2017)

    Article  ADS  Google Scholar 

  18. Z.M. Beiranvand, F.M. Ghaini, H.N. Moosavy, M. Sheikhi, M.J. Torkamany, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 49, 2896 (2018)

  19. Z.M. Beiranvand, F.M. Ghaini, H.N. Moosavy, M. Sheikhi, M.J. Torkamany, M. Moradi, Opt. Laser Technol. 128, 106170 (2020)

  20. X. Jin, P. Berger, T. Graf, J. Phys. D. Appl. Phys. 39, 4703 (2006)

    ADS  Google Scholar 

  21. S. Katayama, Y. Kawahito, Proc. SPIE 7195, 71951R (2009)

    Article  ADS  Google Scholar 

  22. A.D. Brent, V.R. Voller, K.J. Reid, Numerical Heat Transfer 13, 297 (1988)

    Article  Google Scholar 

  23. H. Ki, P.S. Mohanty, J. Mazumder, J. Phys. D. Appl. Phys. 34, 364 (2001)

    Article  ADS  Google Scholar 

  24. S. Pang, L. Chen, J. Zhou, Y. Yin, T. Chen, J. Phys. D. Appl. Phys. 44, 025301 (2011)

  25. W.H. Lee, Math. Model. C3, 406 (1979)

    Google Scholar 

  26. J.H. Cho, S.J. Na, J. Phys. D. Appl. Phys. 39, 5372 (2006)

    Article  ADS  Google Scholar 

  27. H. Ki, J. Mazumder, P.S. Mohanty, Metall Mater Trans A 33, 1817 (2002)

    Article  Google Scholar 

  28. M. Sussman, E.G. Puckett, J. Comput. Phys. 162, 301 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  29. H. Ding, P.D.M. Spelt, C. Shu, J. Comput. Phys. 226, 2078 (2007)

    Article  ADS  Google Scholar 

  30. H. Ren, X. Zhuang, T. Rabczuk, CMES-Comp. Model. Eng. 121, 353 (2019)

    Google Scholar 

  31. L. Qian, Y. Wei, F. Xiao, J. Comput. Phys. 373, 284 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  32. J.U. Brackbill, D.B. Kothe, C. Zemach, J. Comput. Phys. 100, 335 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  33. X. Gao, J. Liu, L. Zhang, Int. J. Adv. Manuf. Tech. 94, 3937 (2018)

    Article  Google Scholar 

  34. W.I. Cho, S.J. Na, C. Thomy, F. Vollertsen, J. Mater. Process. Tech. 212, 262 (2012)

    Article  Google Scholar 

  35. M. Courtois, M. Carin, M.P. Le, S. Gaied, M. Balabane, J. Laser. Appl. 26, 042001 (2014)

  36. L. Huang, X. Hua, D. Wu, Y. Ye, Int. J. Adv. Manuf. Tech. 103, 913 (2019)

    Article  Google Scholar 

  37. E.H. Amara, A. Bendib, J. Phys. D. Appl. Phys. 35, 272 (2002)

    Article  ADS  Google Scholar 

  38. B. Chang, C. Allen, J. Blackburn, P. Hilton, D. Du, Metall. Mater. Trans. B. 46, 906 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledged a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) and China Postdoctoral Science Foundation No. 2020M671479.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanhong Wei.

Ethics declarations

Conflict of interest

The authors declared that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Chen, X., Liu, X. et al. Numerical investigation on keyhole collapsing and rebuilding behavior during pulsed laser beam welding of Ti6Al4V titanium alloy under various pulse frequencies. Appl. Phys. A 128, 140 (2022). https://doi.org/10.1007/s00339-021-05006-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-05006-6

Keywords

Navigation