Skip to main content
Log in

Change of intermetallic phases and mechanical features in rapidly solidified hypereutectic Al–3Ni–3Sb alloy

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rapidly solidified hypereutectic Al–3Ni–3Sb were successfully prepared by the technique of melt–spinning at different solidification rates. The phases appear in the hypereutectic Al–3Ni–3Sb as–cast and rapidly solidified samples were revealed to be Al3Ni, AlSb intermetallic, and the α–Al. To better understand the Al3Ni intermetallic, we made more etching and examined by the FE–SEM microscope. It was observed that the change in the size of Al3Ni intermetallic particles because of rapid solidification was quite remarkable. While the particle size of Al3Ni intermetallic rods was approximately 450 ± 20 nm in conventional cast alloy, it became approximately 45 ± 3 nm in the rapidly solidified alloys. Compared to ingot samples, the microhardness value increased more than twice in melt–spun samples. The significant change in microhardness was due to the shrinkage of the Al3Ni intermetallic structure on the surface of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. G. Ham, M. Baek, J. Kin, S. Lee, K. Lee, Effect of heat treatment on tensile and fatigue deformation behavior of extruded Al–12 wt%Si alloy. Met. Mater. Int. 23, 35–42 (2017)

    Article  Google Scholar 

  2. L. Fang, Y. Fuxiao, Z. Dazhi, Z. Liang, Microstructure and mechanical properties of an Al–12.7Si–0.7Mg alloy processed by extrusion and heat treatment. Mater. Sci. Eng. A 528, 3786–3790 (2011)

    Article  Google Scholar 

  3. Y. Du, Y.A. Chang, B. Huang, W. Gong, Z. Jin, H. Xu, Z. Yuan, Y. Liu, Y. He, F.Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater. Sci. Eng. A 363(1–2), 140–151 (2003)

    Article  Google Scholar 

  4. Y. Du, Y.A. Chang, B. Huang, Y. He, F.Y. Xie, Diffusion coefficients of some solutes in fcc and liquid Al: critical evaluation and correlation. Mater. Sci. Eng., A 363, 140–151 (2003)

    Article  Google Scholar 

  5. E. Karaköse, M. Keskin, Morphological characteristic of the conventional and melt–spun Al–10Ni–5.6Cu (in wt%) alloy. Mater. Charact. 60, 1569–1577 (2009)

    Article  Google Scholar 

  6. E. Karaköse, M. Keskin, Structural investigations of mechanical properties of Al based rapidly solidified alloys. Mater. and Design 32, 4970–4979 (2011)

    Article  Google Scholar 

  7. L.H. Yong, J.S. Hun, L.S. Yong, K.K. Hyun, Alloying of cold–sprayed Al–Ni composite coatings by post–annealing. Appl. Surf Sci. 253, 3496–3502 (2002)

    Google Scholar 

  8. M. Fatih Kilicaslan, E. Karakose, Depth sensing indentation analyses of hypereutectic Al–10Ni – XSc (X = 0, 1, 2) Alloys. Met. Mater. Int. 23(3), 473–480 (2017)

    Article  Google Scholar 

  9. C. Suwanpreecha, P. Pandee, U. Patakham, C. Limmaneevichitr, New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater. Sci. Eng. A 709, 46–54 (2018)

    Article  Google Scholar 

  10. H. Okamoto, Al–Ni (aluminium–nickel). J. Phase Equilibria Diffus. 25(4), 394–394 (2004)

    Article  Google Scholar 

  11. K. Saksl, D. Vojtech, J. Durisin, in situ XRD studies on Al–Ni and Al–Ni–Sr alloys prepared by rapid solidification. J. Alloy. Comp. 464(1–2), 95–100 (2008)

    Article  Google Scholar 

  12. Y. Fan, M. Makhlouf, The Al–Al3Ni eutectic reaction: crystallography and mechanism of formation. Metall. Mater. Trans. 46(9), 3808–3812 (2015)

    Article  Google Scholar 

  13. Y. Fan, K. Huang, M. Makhlouf, Precipitation strengthening in Al–Ni–Mn alloys. Metall. Mater. Trans. 46(12), 5830–5841 (2015)

    Article  Google Scholar 

  14. F. D. George, J. A. Ford, M. J. Salkind, The effect of fiber orientation and morphology on the tensile behavior of Al3Ni whisker reinforced aluminum. In: STP438-EB Metal Matrix Composites, 59-75. West Conshohocken, PA: ASTM International, (1968). https://doi.org/10.1520/STP43807S

  15. Y. Fan, M.M. Makhlouf, The effect of introducing the AlNi eutectic composition into Al–Zr–V alloys on microstructure and tensile properties. Mater. Sci. Eng. A 654(228), 235 (2016)

    Google Scholar 

  16. T. Koutsoukis, M.M. Makhlouf, Alternatives to the Al–Si Eutectic System in Aluminum Casting Alloys. Inter. Metalcast. 10, 342–347 (2016)

  17. N.A. Belov, A.N. Alabin, D.G. Eskin, Improving the properties of cold–rolled Al–6%Ni sheets by alloying and heat treatment. Scr. Mater. 50(1), 89–94 (2004)

    Article  Google Scholar 

  18. E. Karaköse, M. Keskin, Effect of solidification rate on the microstructure and microhardness of a melt–spun Al–8Si–1Sb alloy. J. Alloy. Comp. 466, 111–118 (2009)

    Google Scholar 

  19. M.F. Kilicaslan, E. Karaköse, Production of CNT–bearing melt–spun Al–2Sc–0.05 CNT alloys. J. Alloy. Comp. 738, 182–187 (2018)

    Article  Google Scholar 

  20. E. Karaköse, H. Çolak, Effect of cooling rate and Mg addition on the structural evaluation of rapidly solidified Al–20wt% Cu–12wt% Fe alloy. Mater. Charact. 121, 68–75 (2016)

    Article  Google Scholar 

  21. C.S. Kiminami, N.D. Basim, M.J. Kaufman, M.F. Amateau, T.J. Eden, J.M. Galbraith, Challenges in the development of aluminium–based bulk amorphous alloys. Key Eng. Mater. 189–191, 503–508 (2001)

    Article  Google Scholar 

  22. A. Inoue, H. Kimura, Fabrications and mechanical properties of bulk amorphous, nanocrystalline, nanoquasicrystalline alloys in aluminum–based system. J. Light Met. 1, 31–41 (2001)

    Article  Google Scholar 

  23. D. Srinivasan, K. Chattopadhyay, Hardness of high strength nanocomposite Al–X–Zr (X=Si, Cu, Ni) alloys. Mat. Sci. Eng. A 375–377, 1228–1234 (2004)

    Article  Google Scholar 

  24. B.J. McKay, P. Cizek, P. Schumacher, K.A.Q. O’Reilly, Heterogeneous nucleation in an Al–Ni–Si alloy studied using a metallic glass technique. Mat. Sci. Eng. A 304–306, 240–244 (2001)

    Article  Google Scholar 

  25. L. Yang, H. Bin, L. Bin, N. Anmin, G. Qinfen, W. Jianfeng, L. Qian, Insight into Si poisoning on grain refinement of Al–Si/Al–5Ti–B system. Acta Mater. 2020, 51–65 (1871)

    Google Scholar 

  26. L. Qiang, Q. Feng, D. Bai–Xin, G. Xiang, S. Shi–Li, Y. Hong–Yu, J. Qi–Chuan, Processing, multiscale microstructure refinement and mechanical property enhancement of hypoeutectic Al–Si alloys via in situ bimodal–sized TiB2 particles. Mater. Sci. Eng. A 77710, 139081 (2020)

    Google Scholar 

  27. H. Hailin, Y. Youping, H. Shiquan, G. Wanfu, Z. Yuxun, Effects of thermomechanical treatment on grain refinement, second–phase particle dissolution, and mechanical properties of 2219 Al alloy. J Mater Process Technol 278, 116506 (2020)

    Article  Google Scholar 

  28. A. Zajaczkowski, J. Botor, Thermodynamics of the Al–Sb system determined by vapour pressure measurements. Z. Metallkd. 86, 590–596 (1995)

    Google Scholar 

  29. K. Yamaguchi, M. Yoshizawa, Y. Takeda, K. Kameda, K. Itagaki, Measurement of thermodynamic properties of Al–Sb system by calorimeters. Mater. Trans. JIM 36, 432–437 (1995)

    Article  Google Scholar 

  30. J. Zhu, T. Zhou, M. Zha, C. Li, J. Li, C. Wang, C. Gao, H. Wang, Q. Jiang, Microstructure and wear behaviour of Al-20Mg2Si alloy with combined Zr and Sb additions. J. Alloy. Compd. 767, 1109–1111 (2018)

    Article  Google Scholar 

  31. F. Guo, W. Wang, W. Yu, Y. Zhang, S. Pan, Z. Zhou, D. Liu, J. Qin, Y. Wang, X. Tian, Enhanced nucleation and refinement of eutectic Si by high number-density nano-particles in Al–10Si–0.5Sb alloys. Mater. Des. 117, 382–389 (2017)

    Article  Google Scholar 

  32. M. Okayasu, S. Takeuchi, S. Wu, T. Ochi, Effects of Sb, Sr, and Bi on the material properties of cast Al-Si-Cu alloys produced through heated mold continuous casting. J. Mech. Sci. Technol. 30, 1139–2114 (2016)

    Article  Google Scholar 

  33. M. Gogebakan, O. Uzun, T. Karaaslan, M. Keskin, Hardness and microstructural characteristics of rapidly solidified Al–8–16 wt%Si alloys. J. Alloys Compd. 142, 87–92 (2003)

    Google Scholar 

  34. O. Uzun, F. Yilmaz, U. Kolemen, N. Basman, Sb effect on micro structural and mechanical properties of rapidly solidified Al–12Si alloy. J. Alloys Compd. 509, 21–26 (2011)

    Article  Google Scholar 

  35. S.M. Lee, H.J. Jeon, B.H. Kim, W.T. Kim, D.H. Kim, Solidification sequence of the icosahedral quasicrystal forming Al–Cu–Fe alloys. Mater. Sci. Eng. A 304–306, 871–878 (2001)

    Article  Google Scholar 

  36. E. Karaköse, M. Keskin, Microstructures and microhardness evolutions of melt–spun Al–8Ni–5Nd–4Si alloy. Mater. Charact. 65, 37–47 (2012)

    Article  Google Scholar 

  37. M.F. Kilicaslan, F. Yilmaz, S.J. Hong, O. Uzun, Effect of Co on Si and Fe containing intermetallic compounds (IMCs) in Al–20Si–5Fe alloys. Mater. Sci. Eng. A 556, 716–721 (2012)

    Article  Google Scholar 

  38. E. Karaköse, M.F. Kılıçaslan, H. Çolak, Formation of novel rice–like intermetallic phases and changes in the mechanical, microstructural and electrical properties of Sn–5Sb alloys with addition Ag and Bi. J. Alloy. Comp. 655, 378–388 (2016)

    Article  Google Scholar 

  39. O.C. Hellman, J.A. Vandenbroucke, J. Rüsing, D. Isheim, D.N. Seidman, Analysis of three–dimensional atom–probe data by the proximity histogram. Microsc. Microanal. 6(5), 437–444 (2000)

    Article  ADS  Google Scholar 

  40. D.D. Himbeault, J.R. Cahoon, Creep regimes for directionally solidified Al– Al3N eutectic composite. Metall. Mater. Trans. A 24(12), 2721–2730 (1993)

    Article  ADS  Google Scholar 

  41. R. Elliot, Eutectic solidification. Int. Met. Rev. 22, 161–186 (1977)

    Google Scholar 

  42. Y. Fukui, N. Yamanaka, Y. Enokida, Bending strength of an Al–Al3Ni functionally graded material. Compos. Part B: Eng. 28(1), 37–43 (1997)

    Article  Google Scholar 

  43. C.L. Pereira, L.F. Gomes, A. Garcia, J.E. Spinelli, Comparing the roles of Sb and Bi on microstructures and application properties of the Al–15% Si alloy. J. Alloys Compd 878, 160343 (2021)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financed by Erciyes University Research Funds, Grant No. FBA–2019–8863.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Karaköse.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest”.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaköse, E., Keskin, M. Change of intermetallic phases and mechanical features in rapidly solidified hypereutectic Al–3Ni–3Sb alloy. Appl. Phys. A 127, 850 (2021). https://doi.org/10.1007/s00339-021-04982-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04982-z

Keywords

Navigation