Skip to main content
Log in

Carbon nanotubes decorated with silver nanoparticles by a facile method, and their electrochemical and catalytic evaluation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, MWCNTs were dispersed using the Hamelia patens plant extract and then decorated with AgNPs synthesized with the same aqueous extract as a reducing agent. The UV–Vis technique evaluates the products as a catalyst in the degradation of methylene blue dye during four repetition cycles. SEM, TEM, XRD, FTIR, and UV–Vis studied the products' size, structure, and morphology. SEM studies show MWCNTs successfully dispersed employing the stabilizing agents present in the Hamelia patens aqueous extract. Also, SEM and UV–Vis studies showed synthesized AgNPs and homogeneously dispersed on MWCNTs using Hamelia patens aqueous extract. XRD studies identified the mixture of Ag-cubic and C-hexagonal phases. At the same time, Raman spectroscopy determines MWCNTs structural defects caused by the AgNPs decoration. TEM illustrates AgNPs decorated on the MWCNTs surface with two average particle sizes attributed to Ostwald ripening. MWCNTs with smaller diameters are better decorated than those with larger diameters. HRTEM images illustrated that smaller AgNPs cause better surface decoration regardless of MWCNTs diameter. The CV technique shows that the MWCNTs decoration substantially improves the transport of electrons in the material. Finally, the AgNPs/MWCNTs showed a degradation efficiency of 86% for methylene blue in the first cycle and 44% after four cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5 
Fig. 6 
Fig. 7 
Fig. 8 
Fig. 9 

Similar content being viewed by others

Availability of data and material

All data analyzed during this study are included in the article.

References

  1. V. Moreno, E.J. Llorent-Martínez, M. Zougagh, Angel Ríos 161, 775–779 (2016). https://doi.org/10.1016/j.talanta.2016.09.044

    Article  Google Scholar 

  2. A. Amiri, M. Shanbedi, H. Eshghi, S.Z. Heris, M. Baniadam, J. Phys. Chem. C 5, 3369–3375 (2012). https://doi.org/10.1021/jp210484a

    Article  Google Scholar 

  3. M.G. Sumdani, M.R. Islam, A.N.A. Yahaya, N. Isa, Polym. Eng. Sci. S2, E80–E87 (2019). https://doi.org/10.1002/pen.24966

    Article  Google Scholar 

  4. Y.R. Poudel, W. Li, Mater. Today Phys. 7, 7–34 (2018). https://doi.org/10.1016/j.mtphys.2018.10.002

    Article  Google Scholar 

  5. C. Wu, K.-L. Shi, Y. Zhang, W. Jiang, J. Magn. Magn. Mater. 465, 114–121 (2018). https://doi.org/10.1016/j.jmmm.2018.05.066

    Article  ADS  Google Scholar 

  6. X.-P. Wei, R.-Q. Zhang, L.-B. Wang, Y.-L. Luo, F. Xu, Y.-S. Chen, J. Mater. Chem. C 1, 119–132 (2019). https://doi.org/10.1039/C8TC05294H

    Article  Google Scholar 

  7. M. Zhang, Y. Sun, J. Shi, W. Ning, Z. Hou, Chin. J. Catal. 3, 537–544 (2017). https://doi.org/10.1016/S1872-2067(17)62761-X

    Article  Google Scholar 

  8. M. Mehrabi, P. Parvin, A. Reyhani, S.Z. Mortazavi, Mater. Res. Express 9, 095030 (2017). https://doi.org/10.1088/2053-1591/aa87f6

    Article  ADS  Google Scholar 

  9. M.A.S.M. Haniff, S.M. Hafiz, K.A. Wahid, Z. Endut, M.I. Syono, N.M. Huang, S.A. Rahman, I.A. Azid, J. Mater. Sci. 11, 6280–6290 (2017). https://doi.org/10.1007/s10853-017-0861-8

    Article  ADS  Google Scholar 

  10. S. Hemmati, A. Rashtiani, M.M. Zangeneh, P. Mohammadi, A. Zangeneh, H. Veisi, Polyhedron 158, 8–14 (2019). https://doi.org/10.1016/j.poly.2018.10.049

    Article  Google Scholar 

  11. Y. Yusof, M.I. Zaidi, M.R. Johan, J. Nanomater. 2016, 1–9 (2016). https://doi.org/10.1155/2016/6141496

    Article  Google Scholar 

  12. C.-W. Hsu, Z.-Y. Lin, T.-Y. Chan, T.-C. Chiu, C.-C. Hu, Food Chem. 224, 353–358 (2017). https://doi.org/10.1016/j.foodchem.2016.12.095

    Article  Google Scholar 

  13. S.-H. Min, G.-Y. Lee, S.-H. Ahn, Compos. B Eng. 161, 395–401 (2019). https://doi.org/10.1016/j.compositesb.2018.12.107

    Article  Google Scholar 

  14. D.S. Ahmed, M.R. Mohammed, M.K. Mohammed, Nanosci. Nanotechnol. Asia. 2, 127–133 (2020). https://doi.org/10.2174/2210681208666181005145644

    Article  Google Scholar 

  15. M. Hemmat Esfe, M.H. Kamyab, M. Afrand, M.K. Amiri, Phys. A Stat. Mech. Appl. 510 610–624. (2018) https://doi.org/10.1016/j.physa.2018.06.029

  16. N. Boukhalfa, M. Boutahala, N. Djebri, A. Idris, Int. J. Biol. Macromol. 123, 539–548 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.102

    Article  Google Scholar 

  17. Y.-D. Shi, M. Lei, Y.-F. Chen, K. Zhang, J.-B. Zeng, M. Wang, J. Phys. Chem. C 5, 3087–3098 (2017). https://doi.org/10.1021/acs.jpcc.6b11351

    Article  Google Scholar 

  18. M.-C. Han, J.-H. Zhang, Y.-M. Li, Y.-R. Zhu, T.-F. Yi, J. Electrochem. Soc. 4, A626–A634 (2019). https://doi.org/10.1149/2.0781904jes

    Article  Google Scholar 

  19. X. Wang, W. Zhang, X. Gong, H. Xiuli, Xiaxi Yao. J. Nanopart. Res. 8, 192 (2019). https://doi.org/10.1007/s11051-019-4613-3

    Article  Google Scholar 

  20. I. Ebrahimi, M.P. Gashti, J. Phys. Chem. Solids 118, 80–87 (2018). https://doi.org/10.1016/j.jpcs.2018.03.008

    Article  ADS  Google Scholar 

  21. L.M. Hoyos-Palacio, D.P. Cuesta Castro, I.C. Ortiz-Trujillo, L.E. Botero Palacio, B.J. Galeano Upegui, N.J. Escobar Mora, J.A. Carlos Cornelio, Mater. Res. Technol. 6, 5893–5898 (2019). https://doi.org/10.1016/j.jmrt.2019.09.062

    Article  Google Scholar 

  22. W.U. Rehman, Z.M.A. Merican, A.H. Bhat, B.G. Hoe, A.A. Sulaimon, O. Akbarzadeh, M.S. Khan, A. Mukhtar, S. Saqib, A. Hameed, N. Mellon, H. Ullah, S. Ullah, M.A. Assiri, J. Mol. Liq. 293, 111534 (2019). https://doi.org/10.1016/j.molliq.2019.111534

    Article  Google Scholar 

  23. I.-H. Yoo, S.S. Kalanur, H. Seo, J. Alloys Compd. 788, 936–943 (2019). https://doi.org/10.1016/j.jallcom.2019.02.298

    Article  Google Scholar 

  24. S. Harikrishna, A.R. Robert, H. Ganja, S. Maddila, S.B. Jonnalagadda, Sustain. Chem. Pharm. 16, 100265 (2020). https://doi.org/10.1016/j.scp.2020.100265

    Article  Google Scholar 

  25. S.M. Banihashemian, H. Hajghassem, A. Nikfarjam, J. Azizi Jarmoshti, S. Abdul Rahman, G. Boon Tong, Mater. Res. Express 6, 065602 (2019). https://doi.org/10.1088/2053-1591/ab07de

    Article  ADS  Google Scholar 

  26. J. Liu, X. Yao, J. Ye, C. Zhang, H. Lin, J. Fu, Biomed. Mater. 5, 055036 (2020). https://doi.org/10.1088/1748-605x/ab99d6

    Article  Google Scholar 

  27. M.S. Islam, A.N. Naz, M.N. Alam, A.K. Das, J.H. Yeum, Colloid Interface Sci. Comm. 35, 100247 (2020). https://doi.org/10.1016/j.colcom.2020.100247

    Article  Google Scholar 

  28. D. Mendoza-Cachú, J.L. López-Miranda, C. Mercado-Zúñiga, G. Rosas, Diam. Relat. Mater. 84, 26–31 (2018). https://doi.org/10.1016/j.diamond.2018.03.004

    Article  ADS  Google Scholar 

  29. M. Tariq, M. Muhammad, J. Khan, A. Raziq, M.K. Uddin, A. Niaz, S.S. Ahmed, A. Rahim, J. Mol. Liq. 312, 113399 (2020). https://doi.org/10.1016/j.molliq.2020.113399

    Article  Google Scholar 

  30. Z.-N. Huang, J. Zou, Y. Jin-Gang, J. Electrochem. Soc. 6, 067505 (2020). https://doi.org/10.1149/1945-7111/ab7e1e

    Article  Google Scholar 

  31. M. Mofokeng, L.N. Nthunya, L. Gutierrez, P. Matabola, S. Mishra, E.N. Nxumalo, J. Environ. Chem. Eng. 8, 104497 (2020). https://doi.org/10.1016/j.jece.2020.104497

    Article  Google Scholar 

  32. W. Zhang, Q. Yang, Q. Luo, L. Shi, S. Meng, J. Clean. Prod. 242, 118425 (2020). https://doi.org/10.1016/j.jclepro.2019.118425

    Article  Google Scholar 

  33. M. Sadeghi, M.H. Mehdinejad, N. Mengelizadeh, Y. Mahdavi, H. Pourzamani, Y. Hajizadeh, M.R. Zare, J. Water Process. Eng. 31, 100852 (2019). https://doi.org/10.1016/j.jwpe.2019.100852

    Article  Google Scholar 

  34. M.A. Tony, S.A. Mansour, Nanoscale Adv. 4, 1362–1371 (2019)

    Article  ADS  Google Scholar 

  35. I. Santos-Ramos, C. Mercado-Zúñiga, S.E. Borjas-Garcia, J. Zárate-Medina, G. Rosas, Fuller Nanotub. Carbon Nanostruct. 8, 603–610 (2020). https://doi.org/10.1080/1536383X.2020.1725748

    Article  Google Scholar 

  36. A.R. Bahador, S.M.T. Otaqsara, S.M. Baizaee, Appl. Surf. Sci. 457, 1087–1095 (2018). https://doi.org/10.1016/j.apsusc.2018.07.043

    Article  ADS  Google Scholar 

  37. H. Veisi, S. Kazemi, P. Mohammadi, P. Safarimehr, S. Hemmati, Polyhedron 157, 232–240 (2019). https://doi.org/10.1016/j.poly.2018.10.014

    Article  Google Scholar 

  38. J. Jiao, J. Wan, Y. Ma, Y. Wang, Environ. Sci. Pollut. 25, 26389–26396 (2019). https://doi.org/10.1007/s11356-019-05877-6

    Article  Google Scholar 

  39. C. Liu, L. Wang, Y. Guo, X. Gao, Y. Xu, Q. Wei, B. Man, C. Yang, Appl. Surf. Sci. 487, 1077–1083 (2019). https://doi.org/10.1016/j.apsusc.2019.05.179

    Article  ADS  Google Scholar 

  40. I. Ebrahimi, M.P. Gashti, J. Phys. Chem. Solids. 118, 80–87 (2018)

    Article  ADS  Google Scholar 

  41. Z. Ali, M. Mehmood, J. Ahmed, K.H. Thebo, Mater. Res. Express 6, 105627 (2019)

    Article  ADS  Google Scholar 

  42. U. Pakdee, B. Duangsawat, J. Nanomater. 2017, 1867414 (2017)

    Google Scholar 

  43. L. Gan, A. Geng, L. Jin, Q. Zhong, L. Wang, L. Xu, C. Mei, Polym. Bull. 2, 793–804 (2020). https://doi.org/10.1007/s00289-019-02776-1

    Article  Google Scholar 

  44. B. Pandit, B.R. Sankapal, New J. Chem. 41, 10808–10814 (2017)

    Article  Google Scholar 

  45. U. Elizbit, Z. Liaqat, M.A. Hussain, D. Khan, J. Arif, Korean Ceram. Soc. (2021). https://doi.org/10.1007/s43207-021-00132-6

    Article  Google Scholar 

  46. S. Yu, X. Zhao, G. Su, Y. Wang, Z. Wang, H. Zhu, Ionics 25, 5141–5152 (2019)

    Article  Google Scholar 

  47. S. Nellaiappan, A.S. Kumar, Microchim. Acta 184, 3255–3264 (2017)

    Article  Google Scholar 

  48. C. Rajkumar, B. Thirumalraj, K.-C. Lin, Microchim. Acta 185, 395 (2018)

    Article  Google Scholar 

  49. R. Zhang, J. Qian, S. Ye, J. Wuhan Univ. Technol.-Mat. Sci. 33, 1281–1287 (2018)

    Article  Google Scholar 

  50. X. Li, Y. Ma, X.-L. Zhong, L.-S. Wang, Microchem. J. 159, 105488 (2020)

    Article  Google Scholar 

  51. A. Roy, A. Ray, S. Saha, S. Das, Int. J. Hydrog. Energy. 43, 7128–7139 (2018)

    Article  Google Scholar 

  52. S. Mohan, O.S. Oluwafemi, S.P. Songca, D. Rouxel, P. Miska, F.B. Lewu, N. Kalarikkal, S. Thomas, Pure Appl. Chem. 88(1–2), 71 (2016). https://doi.org/10.1515/pac-2015-0602

    Article  Google Scholar 

  53. Y. Lin, S. Wu, C. Yang, M. Chen, X. Li, Appl. Catal. B 245, 71–86 (2019). https://doi.org/10.1016/j.apcatb.2018.12.048

    Article  Google Scholar 

  54. M.K. Ahmed, Mehrez E. El-Naggar, Ali Aldalbahi, Mohamed H. El-Newehy, A.A. Menazea, J. Mol. Liq. 315, 113794 (2020). https://doi.org/10.1016/j.molliq.2020.113794

    Article  Google Scholar 

  55. K.G. Akpomie, J. Conradie, Arab. J. Chem. 9, 7115–7131 (2020). https://doi.org/10.1016/j.arabjc.2020.07.017

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Consejo Nacional de Ciencia y Tecnología CONACYT for financial support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. IS-R contributed to conceptualization, methodology, investigation, and writing—review. KC contributed to formal analysis and writing—review. SJFR contributed to formal analysis, writing—review, and editing. JZ contributed to formal analysis and writing—review. GR contributed to resources, conceptualization, writing—original draft, and supervision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to G. Rosas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos-Ramos, I., Chávez, K., Figueroa, S.J. et al. Carbon nanotubes decorated with silver nanoparticles by a facile method, and their electrochemical and catalytic evaluation. Appl. Phys. A 127, 778 (2021). https://doi.org/10.1007/s00339-021-04919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04919-6

Keywords

Navigation