Skip to main content
Log in

Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites

  • Organic materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Ag-Pt bimetallic nanoparticles decorated on MWCNTs/PANI nanocomposites have been synthesized by in-situ chemical oxidative polymerization and chemical co-reduction method. The Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), ultraviolet-visible (UV-vis) absorption spectroscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to characterize the morphology and structure of the nanocomposites. It can be observed that the PANI was uniformly grown along the MWCNTs to form MWCNsT/PANI fiber-like nanocomposites with diameter about 60 nm, and the Ag-Pt binary nanoparticles were decorated onto MWCNTs/PANI with particle sizes around 6.8 nm. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were used to characterize the electrochemical performance of the prepared electrode. The results demonstrated that the obtained MWCNTs/PANI/Ag-Pt electrode displayed a good electrochemical activity and fast electron transport, which has potential applications in biosensors and supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng Y N, Wang K, Zhang Y J, et al. Hierarchical Porous Graphene/Polyaniline Composites Film with Superior Rate Performance for Flexible Super Capacitors[J]. Advanced Materials, 2013, 25(48): 6985–6990

    Article  Google Scholar 

  2. Xu Q, Gu S X, Jin L J, et al. Graphene/Polyaniline/Gold Nanoparticles Nanocomposites for the Direct Electron Transfer of Glucose Oxidase and Glucose Biosensing[J]. Sensors and Actuators B, 2014, 190(1): 562–569

    Article  Google Scholar 

  3. Li M C, Ma C N, Zhong Y J. Preparation and Electrocatalytic Activity of Polyaniline-Poly( propylene oxide) modified by Pt nanoparticles[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2006, 21(4): 9–11

    Article  Google Scholar 

  4. Saptarshi D, Chapal K D. Silver Nanoparticles Decorated Polyaniline/Multiwalled Carbon Nanotubes Nanocomposite for High-Performance Supercapacitor Electrode[J]. Industrial & Engineering Chemistry Research, 2014, 53(9): 3495–3508

    Article  Google Scholar 

  5. Gao F, Cheng Y, An L, et al. Polianiline Nanotube-ZnO Composite Materials: Facile Synthesis and Application[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2015, 30(6): 1147–1151

    Article  Google Scholar 

  6. Feng X, Chen H J, Pan Y W, et al. Development of Glucose Biosensors Based on Nanostructured Graphene-conducting Polyaniline Composite[J]. Biosensors and Bioelectronics., 2015, 70: 411–417

    Article  Google Scholar 

  7. Li L X, Li G Y, An B G. Synthesis of a DWNTs/PAni Composite and Its Supercapacitive Behavior Compared to the SWNTs/PAni and MWNTs/PAni Composites[J]. RSC Advances, 2014, 4(19): 9756–9761

    Article  Google Scholar 

  8. Racha R, Sheetal C, Devender, et al. An Amperometric Biosensor Based on Laccase Immobilized onto Fe3O4NPs/cMWCNT/PANI/Au Electrode for Determination of Phenolic Content in Tea Leaves Extract[J]. Enzyme and Microbial Technology, 2012, 51(4): 179–185

    Article  Google Scholar 

  9. Zhong H A, Yuan R, Chai Y Q, et al. In Situ Chemo-synthesized Multi-wall Carbon Nanotube-conductive Polyaniline Nanocomposites: Characterization and Application for a Glucose Amperomatric Biosensor[J]. Talanta, 2011, 85(1): 104–111

    Article  Google Scholar 

  10. Fang Y, Jiang Q, Deng Min, et al. Preparation in-situ of Carbon Nanotube/Polyaniline Modified Electrode and Application for Ascorbic Acid Detection[J]. Journal of Electroanalytical Chemistry, 2015, 755: 39–46

    Article  Google Scholar 

  11. Boomi P, Prabu H G, Mathiyarasu J. Synthesis and Characterization of Polyaniline/Ag-Pt Nanocomposites for Improved Antibacterial Activity[J]. Colloids and Surfaces B: Biointerfaces, 2013, 103: 9–14

    Article  Google Scholar 

  12. Rashid M, Jun T S, Jung Y, et al. Bimetallic Core-Shell Ag@Pt Nanoparticles -decorated MWNT Electrodes for Amperometric H2 Sensors and Direct Methanol Fuel Cells[J]. Sensors and Actuators B, 2015, 208: 7–13

    Article  Google Scholar 

  13. Cao J Y, Guo M W, Wu J Y, et al. Carbon-supported Ag@pt Core-Shell Nanoparticles with Enhanced Electrochemical Activity for Methanol Oxidation and Oxygen Reduction Reaction[J]. Journal of Power Sources, 2015, 277: 155–160

    Article  Google Scholar 

  14. Pusch J M, Brondani D, Luza L, et al. Pt-Pd Biometallic Nanoparticles Dispersed in an Ionic Liquid and Peroxidase Immobilized on Nanoclay Applied in the Development of a Biosensor[J]. Analyst, 2013, 138(17): 4898–4906

    Article  Google Scholar 

  15. Wang P, Zhou F Y, Wang Z W, et al. Substrate-induced Assembly of PtAu Alloy Nanostructures at Choline Functionalized Mololayer Interface for Nitrite Sensing[J]. Journal of Electroanalytical Chemistry, 2015, 750: 36–42

    Article  Google Scholar 

  16. Xie Y B, Xia C, Du H X, et al. Enhanced Electrochemical Performance of Polyaniline/Carbon/Titanium Nitride Nanowire Array for Flexible Supercapacitor[J]. Journal of Power Sources, 2015, 286(20): 561–570

    Article  Google Scholar 

  17. Yin Z S, Hu T H, Wang J L, et al. Preparation of Highly Active and Stable Polyanilian-Cobalt-Carbon Nanotubes Electrocatalyst for Oxygen Reduction Reaction in Polymer Electrolyte Membrance Fuel Cell[J]. Electrochimica Acta, 2014, 119(2): 144–154

    Article  Google Scholar 

  18. Eksin E, Bolat G, Kuralary F, et al. Preparation of Gold Nanoparticles/Single-Walled Carbon Nanotubes/Polyaniline Composite-coated Electrode Development for DNA Detection[J]. Polym. Bull., 2015, 72(12): 3135–3146

    Article  Google Scholar 

  19. He D P, Zeng C, Xu C, et al. Polyaniline-functionalized Carbon Nanotubes Supported Platinum Catalysts[J]. Langmuir, 2011, 27: 5582–5588

    Article  Google Scholar 

  20. Giri S, Ghosh D, Malas A, et al. A Facile Synthesis of a Palladium-doped Polyaniline-modified Carbon Nanotube Composites for Supercapacitors[J]. Journal of Electronic Materials, 2013, 42(8), 2595–2605

    Article  Google Scholar 

  21. Narang J, Chauhan N, Jain P, et al. Silver Nanoparticles/Multiwalled Carbon Nanotube/Polyaniline Film for Amperometric Glutathione[J]. International Journal of Biological Macromolecules, 2012, 50(3): 672–678

    Article  Google Scholar 

  22. Zhang R R, Qian J, Ye S L, et al. Enhanced Electrochemical Capacitive Performance of “Sandwich-like” MWCNTs/PANI/PSS-GR Electrode Material[J]. RSC Advances, 2016, 6(103): 100954–100961

    Article  Google Scholar 

  23. Guo F J, Mi H Y, Zhou J P, et al. Hybrid Pseudocapacitor Materials from Polyaniline @Multi-walled Carbon Nanotube With Ultrafine Nanofiber-assembled Network Shell[J]. Carbon, 2015, 95: 323–329

    Article  Google Scholar 

  24. Wan P B, Wen X M, Sun C Z, et al. Flexible Transparent Films based on Nanocomposite Networks of Polyaniline and Carbon Nanotubes for High-performance Gas Sensing[J]. Small, 2015, 11(40): 5409–5415

    Article  Google Scholar 

  25. Cao X, Wang N, Han Y, et al. PtAg Bimetallic Nanowires: Facial Synthesis and Their Use as Excellent Electrocatalysts toward Low-cost Fuel Cell[J]. Nano Energy, 2015, 12(12): 105–114

    Article  Google Scholar 

  26. Lu D B, Zhang Y, Lin S X, et al. Synthesis of PtAu Bimetallic Nanoparticles on the Graphene-Carbon Nanotube Hybrid Nnanomaterials for Nonenzymatic Hydrogen Peroxide Sensor[J]. Talanta, 2013, 12(15): 111–116

    Article  Google Scholar 

  27. Wu T M, Lin Y W. Doped Polyaniline /Multi-walled Carbon Nanotube Composites: Preparation, Characterization and Properties[J]. Polymer, 2006, 47(10): 3576–3582

    Article  Google Scholar 

  28. Dhibar S, Bhattacharya P, Hatui G, et al. Transition Mental-doped Polyaniline/Single-walled Carbon Nanotubes Nanocomposites: Efficient Electrode Materials for High Performance Supercapacitors[J]. ACS Sustainable Chem. Eng., 2014, 2(5): 1114–1127

    Article  Google Scholar 

  29. Tang L, Wu T, Kan J Q. Synthetic and Properties of Polyaniline-Cobalt Coordination Polymer[J]. Synthetic Metals, 2009, 159(15): 1644–1648

    Article  Google Scholar 

  30. Ubul A, Jamal R, Rahman A, et al. Solid-state Synthesis and Characterization of Polyaniline/Multi-walled Carbon Nanotubes Composite[J]. Synthetic Metals, 2011, 161(19-20): 2097–2102

    Article  Google Scholar 

  31. Wang S Y, Ma L, Gan M Y, et al. Free-standing 3D Graphene/Polyaniline Composite Film Electrodes for High-performance Super Capacitors[J]. Journal of Power Sources, 2015, 299: 347–355

    Article  Google Scholar 

  32. Samphao A, Butmee P, Jitcharoen J, et al. Flow-injection Amperometric Determination of Glucose using a Biosensor based on Immobilization of Glucose Oxidase onto Au Seed decorated on Core Fe3O4 Nanoparticles[J]. Talanta, 2015, 142: 35–42

    Article  Google Scholar 

  33. Lv D C, Shen J L, Wang G C. A Post-oxidation Strategy for the Synthesis of Graphene/Carbon Nanotube-supported Polyaniline Nanocomposites as Advanced Supercapacitor Electrodes[J]. RSC Advances, 2015, 5(31): 24599–24606

    Article  Google Scholar 

  34. Liu S, Liu X H, Li Z P, et al. Fabrication of Free-standing Graphene/Polyaniline Nanofibers Composite Paper via Electrostatic Adsorption for Electrochemical Supercapacitors[J]. New J. Chem., 2011, 35(2): 369–374

    Article  Google Scholar 

  35. Notarianni M, Liu J Z, Mirri F, et al. Graphene-based Supercapacitor with Carbon Nanotube Film as Highly Efficient Current Collector[J]. Nanotechnology, 2014, 25(43), 435405–435412

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Qian  (钱俊).

Additional information

Funded by National Natural Science Foundation of China (Nos. 51371129 and 11174226), Hubei Science and Technology Supported Project (No.YJG0261), Wuhan Science and Technology Research Project (No.2014010101010002), the Key Project of Guangdong Province (No.2013B090500078)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Qian, J., Ye, S. et al. Synthesis and Enhanced Electrochemical Activity of Ag-Pt Bimetallic Nanoparticles Decorated MWCNTs/PANI Nanocomposites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 1281–1287 (2018). https://doi.org/10.1007/s11595-018-1964-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1964-z

Key words

Navigation