Skip to main content
Log in

Insights into temperature influence on analog/RF and linearity performance of a Si/Ge heterojunction asymmetric double gate dopingless TFET

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The charge-plasma based dopingless (DL) tunnel field effect transistor (TFET) is considered as an emerging TFET structure resulting from its immunity against random dopant fluctuations and not requiring high thermal budgets and expensive annealing methods for fabrication. But, temperature sensitivity is a major concern to predict the reliability of a device as the bandgap of semiconductor material changes under the influence of temperature variations when used in a system. Therefore, in this manuscript, the effect of variations in temperature (200–500 K) are investigated on the analog/RF and linearity characteristics of a Si/Ge hetero-junction (HJ) asymmetric double gate (ADG) DLTFET and abbreviated as HJ-ADG-DLTFET in the entire manuscript. In this context, Silvaco ATLAS simulator is used to evaluate DC and Analog/RF performance parameters such as \(I_{D}-V_{G}\) characteristics, transconductance (\(g_{m}\)), cut off frequency (\(f_{T}\)) and transconductance generation factor (TGF) considering effect of temperature variations. Furthermore, linearity parameters such as second- and third-order voltage intercept point (\(\mathrm{VIP}_{2}, \mathrm{VIP}_{3}\)), 1-dB compression point, third-order input-interception point (\(\mathrm{IIP}_{3}\)) and intermodulation distortion \((\mathrm{IMD}_{3})\) are also evaluated considering temperature variations as these FoM are significant for linear and analog/RF applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  2. B.R. Raad, D. Sharma, P. Kondekar, K. Nigam, D.S. Yadav, Drain work engineered doping-less charge plasma TFET for ambipolar suppression and RF performance improvement: a proposal. Des. Investig. IEEE Trans. Electron Devices 63(10), 3950–3957 (2016)

    Article  ADS  Google Scholar 

  3. S. Kumar, K.S. Singh, K. Nigam, V.A. Tikkiwal, B.V. Chandan, Dual Material dual-oxide double gate TFET for improvement in DC Characteristics, analog/RF and linearity performance. Appl. Phys. A Mater. Sci. Process. 125(5), 353 (2019)

    Article  ADS  Google Scholar 

  4. X. Duan, J. Zhang, S. Wang, Y. Li, S. Xu, Y. Hao, A high-performance gate engineered InGaN dopingless Tunnel FET. IEEE Trans. Electron Devices 65(3), 1223–1229 (2018)

    Article  ADS  Google Scholar 

  5. J. Patel, D. Sharma, S. Yadav, A. Lemtur, P. Suman, Performance improvement of nano-wire TFET by hetero-dielectric and hetero-material: at device and circuit level. Microelectron. J. 85, 72–82 (2019)

    Article  Google Scholar 

  6. D.B. Abdi, M.J. Kumar, In built \(N^{+}\) pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett. 35(12), 1170–1172 (2014)

    Article  ADS  Google Scholar 

  7. M.R. Tripathy, A.K. Singh, A. Samad, S. Chander, K. Baral, P.K. Singh, S. Jit, Device and Circuit-level assessment of GaSb/Si hetero-junction vertical Tunnel-FET for low-power applications. IEEE Trans. Electron Devices 67, 3 (2020)

    Article  Google Scholar 

  8. P.N. Kondekar, K. Nigam, S. Pandey, D. Sharma, Design and analysis of polarity controlled electrically doped tunnel FET with bandgap engineering for analog/RF applications. IEEE Trans. Electron Devices 64(2), 412–418 (2017)

    Article  ADS  Google Scholar 

  9. M.J. Kumar, S. Janardhanan, Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)

    Article  ADS  Google Scholar 

  10. P.K. Verma, S.K. Gupta, An improved analog/RF and linearity performances with small-signal parameter extraction of virtually doped recessed Source/Drain dopingless junctionless transistor for Radio-frequency applications. Silicon (2020)

  11. M.A. Raushan, N. Alam, M.J. Siddiqui, Dopingless tunnel field effect transistor with oversized back gate: proposal and Investigation. IEEE Trans. Electron Devices 65(10), 4701–4708 (2018)

    Article  ADS  Google Scholar 

  12. N. Kumar, A. Raman, Low voltage charge-plasma based dopingless tunnel field effect transistor?: analysis and optimization. Microsyst. Technol. 26(4), 1343–1350 (2020)

    Article  Google Scholar 

  13. S. Sharma, B. Kaur, Performance investigation of asymmetric double-gate dopingless tunnel FET with Si/Ge heterojunction. IET Circuits Devices Syst. 14(5), 695–701 (2020)

    Article  Google Scholar 

  14. S. Datta, H. Liu, V. Narayanan, Tunnel FET technology: a reliability perspective. Microelectron. Reliab. 54(5), 861–874 (2014)

    Article  Google Scholar 

  15. A.E. Islam, Current status of reliability in Extended and beyond CMOS devices. IEEE Trans. Mater. Device Reliab. 16(4), 647–666 (2016)

    Article  MathSciNet  Google Scholar 

  16. Y. Varshni, Temperature dependence of energy gap in semiconductors. Physica 34(1), 149–154 (1967)

    Article  ADS  Google Scholar 

  17. S. Saurabh, M.J. Kumar, Fundamentals of tunnel field effect transistor (CRC Press, 2016, Ist edn.), pp. 1–291

  18. R. Narang, M. Saxena, R.S. Gupta, M. Gupta, Impact of temperature variations on the device and circuit performance of tunnel FET: a simulation study. IEEE Trans. Nanotechnol. 12(6), 951–957 (2013)

    Article  ADS  Google Scholar 

  19. K. Boucart, A.M. Ionescu, Double gate tunnel FET with high-\(\kappa\) dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)

    Article  ADS  Google Scholar 

  20. W. Shockley, W.T. Read, Statistics of the recombination of holes and electrons. Phys. Rev. 87(5), 835–842 (1952)

    Article  ADS  Google Scholar 

  21. J.A. McDonald, Proving they can take the heat. III-Vs Rev. 9(5), 63–67 (1996)

    Google Scholar 

  22. A. Osman, M. Osman, Investigation of high temperature effects on MOSFET transconductance (\(g_{m}\)), in Proc. 4th Int. High Temp. Electron. Conf. (HITEC), 301–304, (2002)

  23. S. Yadav, D. Sharma, B.V. Chandan, A novel hetero-material gate-underlap electrically doped TFET for improving DC/RF and ambipolar behavior. Superlattices MIcrostruct. 117, 9–17 (2018)

    Article  ADS  Google Scholar 

  24. M.R.U. Shaikh, S.A. Loan, Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans. Electron Devices 66(4), 1628–1634 (2019)

    Article  ADS  Google Scholar 

  25. J. Robertson, High dielectric constant oxides. Eur. Phys. J. Appl. Phys. 28, 265–291 (2004)

    Article  ADS  Google Scholar 

  26. A. Singh, S. Chaudhury, C. Pandey, Design and analysis of high-\(\kappa\) silicon nanotube tunnel FET device. IET Circuits Devices Syst. 13(8), 1305–1310 (2019)

    Article  Google Scholar 

  27. ATLAS Device Simulation Software, Silvaco Int (Santa Clara, CA, 2014)

  28. B. Rajasekharan, R.J.E. Hueting et al., Fabrication and characterization of the charge plasma diode. IEEE Electron Device Lett. 31(6), 528–530 (2010)

    Article  ADS  Google Scholar 

  29. M.J. Kumar, K. Nadda, Bipolar charge-plasma transistor: a novel three terminal device. IEEE Trans. Electron Devices 59(4), 962–967 (2012)

    Article  ADS  Google Scholar 

  30. H. Ye, J. Yu, Germanium epitaxy on silicon. Sci. Technol. Adv. Mater. 15(2), 024601 (2014)

    Article  Google Scholar 

  31. P.Y. Wang, B.Y. Tsui, Experimental demonstration of p-channel germanium epitaxial tunnel layer (ETL) tunnel FET with high tunneling current and high ON/OFF ratio. IEEE Electron Device Lett. 36(12), 1264–1266 (2015)

    Article  ADS  Google Scholar 

  32. Q. Xie, S. Deng, M. Schaekers et al., Germanium surface passivation and atomic layer deposition of high-k dielectrics: a tutorial review on Ge-based MOS capacitors. Semicond. Sci. Technol. 27(7), 074012 (2012)

    Article  ADS  Google Scholar 

  33. J. Widiez, J. Lolivier, M. Vinet, Experimental evaluation of gate architecture influence on DG SOI MOSFETs performance. IEEE Trans. Electron Devices 52(8), 1772–1779 (2005)

    Article  ADS  Google Scholar 

  34. R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications. Mater. Today 17(5), 236–246 (2014)

    Article  Google Scholar 

  35. J.P. Kim, W.Y. Choi, J.Y. Song, S.W. Kim, J.D. Lee, B.G. Park, Design and fabrication of asymmetric MOSFETs using a novel self-aligned structure. IEEE Trans. Electron Devices 54(11), 2969–2974 (2007)

    Article  ADS  Google Scholar 

  36. R. Lin, Q. Lu, P. Ranade et al., An adjustable work function technology using Mo gate for CMOS devices. IEEE Electron Device Lett. 23, 49–51 (2002)

    Article  ADS  Google Scholar 

  37. J. Madan, R. Chaujar, Temperature associated reliability issues of heterogeneous gate dielectric gate all around Tunnel FET. IEEE Trans. Nanotechnol. 17(1), 41–48 (2018)

    Article  ADS  Google Scholar 

  38. J. Min, L.D. Wang, J. Wu, P.M. Asbeck, Analysis of temperature dependent effects on I–V characteristics of heterostructure tunnel field effect transistors. IEEE J. Electron Devices Soc. 4(6), 416–423 (2016)

    Article  Google Scholar 

  39. R. Saha, B. Bhowmick, S. Baishya, Temperature effect on RF/ analog and linearity parameters in DMGFinFET. Appl. Phys. A Mater. Sci. Process. 124, 642 (2018)

    Article  ADS  Google Scholar 

  40. P. Ghosh, S. Haldar, R.S. Gupta, M. Gupta, An investigation of linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012)

    Article  ADS  Google Scholar 

  41. B. Razavi, Microelectronics (Prentice-Hall, New York, 1998)

  42. E. Datta, A. Chattopadhyay, A. Mallik, Y. Omura, Temperature dependence of analog performance, linearity and harmonic distortion for a ge-source tunnel FET. IEEE Trans. Electron Devices 67(3), 810–815 (2020)

    Article  ADS  Google Scholar 

  43. K. Vanlalawmpuia, B. Bhowmick, Optimization of a hetero-structure vertical tunnel fet for enhanced electrical performance and effects of temperature variation on rf/linearity parameters. Silicon 13(1), 155–166 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suruchi Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Basu, R. & Kaur, B. Insights into temperature influence on analog/RF and linearity performance of a Si/Ge heterojunction asymmetric double gate dopingless TFET. Appl. Phys. A 127, 392 (2021). https://doi.org/10.1007/s00339-021-04541-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04541-6

Keywords

Navigation