Skip to main content

Advertisement

Log in

An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, the molecular dynamics (MD) simulation is employed to investigate the tensile and compressive deformation behavior of nano-polycrystalline Ti with the mean grain size of 6.8 nm. The deformation behaviors reveal that the nano-polycrystalline Ti has different deformation mechanisms under the tension or compression. When the nano-polycrystalline Ti is applied tensile loading, the dislocation density quantification shows that there is no significant new dislocation appearing before the tensile strain reaches the failure strain (ε = 0.12). Instead, a 25° difference in the grain boundary misorientation angle between two grains was observed, which indicates that the grain boundary rotation and sliding are appeared to dominate the tensile deformation process of nano-polycrystalline Ti. When the nano-polycrystalline Ti is applied compressive loading, the compressive stress increases linearly with the increase in compressive strain before the compressive strain arrives 0.075. Once the compressive strain exceeds 0.075, the nano-polycrystalline Ti enters the plastic deformation stage. In this case, the hcp-Ti atoms near the grain boundary were firstly transformed to the bcc-Ti atoms and then the hcp-Ti atoms within the grain transforms into the bcc-Ti atoms with the increase in compressive strain, which indicates that the plastic deformation of nano-polycrystalline Ti during the compression is dominated by the phase transformation from hcp-Ti to bcc-Ti. In addition, it is found that the deformation behaviors of nano-polycrystalline Ti are sensitive to strain rate and temperature. The present work could be beneficial for the design and fabrication of nano-polycrystalline Ti alloys with excellent mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. V.M. Tabie, C. Li, S.F. Wang, J.W. Li, X.J. Xu, Mechanical properties of near alpha titanium alloys for high-temperature applications—a review. Aircr. Eng. Aerosp. Tec. 92, 521–540 (2020)

    Article  Google Scholar 

  2. P.F. Gao, M.W. Fu, M. Zhan, Z.N. Lei, Y.X. Li, Deformation behavior and microstructure evolution of titanium alloys with lamellar microstructure in hot working process: a review. J. Mater. Sci. Tec. 39, 56–73 (2020)

    Article  Google Scholar 

  3. S.Y. Liu, Y.C. Shin, Additive manufacturing of Ti6Al4V alloy: a review. Mater. Des. 164, 107552 (2019)

    Article  Google Scholar 

  4. M. Kaur, K. Singh, Review on titanium and titanium based alloys as biomaterials for orthopaedic applications. Mater. Sci. Eng. C 102, 844–862 (2019)

    Article  Google Scholar 

  5. L.C. Zhang, L.Y. Chen, A review on biomedical titanium alloys: recent progress and prospect. Adv. Eng. Mater. 21, 1801215 (2019)

    Article  Google Scholar 

  6. A.N. Omran, M.M. Ali, M.M. Kh, Biocompatibility, corrosion, and wear resistance of β titanium alloys for biomedical applications. Appl. Phys. A 126, 942 (2020)

    Article  ADS  Google Scholar 

  7. K. Lu, Stabilizing nanostructures in metals using grain and twin boundary architectures. Nat. Rev. Mater. 1, 16019 (2016)

    Article  ADS  Google Scholar 

  8. Z. Cheng, H.F. Zhou, Q.H. Lu, H.J. Gao, L. Lu, Extra strengthening and work hardening in gradient nanotwinned metals. Science 362, 559 (2018)

    Google Scholar 

  9. T. Chookajorn, H.A. Murdoch, C.A. Schuh, Design of stable nano-polycrystalline alloys. Science 24, 951–954 (2012)

    Article  ADS  Google Scholar 

  10. Y.J. Wei, Y.Q. Li, L.C. Zhu, Y. Liu, X.Q. Lei, G. Wang, Y.X. Wu, Z.L. Mi, J.B. Liu, H.T. Wang, H.J. Gao, Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat. Commun. 5, 3580 (2014)

    Article  ADS  Google Scholar 

  11. K. Hajizadeh, B. Eghbali, K. Topolski, K.J. Kurzydlowski, Untra-fine grained bulk cp-Ti processed by multi-pass ECAP at warm deformation region. Mater. Chem. Phys. 143, 1032–1038 (2014)

    Article  Google Scholar 

  12. H.F. Wang, C.Y. Ban, N.N. Zhao, Y.Y. Kang, T.P. Qin, S.T. Liu, J.Z. Cui, Enhanced strength and ductility of nano-grained titanium processed by two-step severe plastic deformation. Mater. Lett. 266, 127485 (2020)

    Article  Google Scholar 

  13. M.S. Hasan, R. Lee, W.W. Xu, Deformation nanomechanics and dislocation quantification at the atomic scale in nano-polycrystalline magnesium. J. Magnes. Alloy. 8, 1296–1303 (2020)

    Article  Google Scholar 

  14. C. Huang, X.H. Peng, B. Yang, S.Y. Weng, Y.B. Zhao, T. Fu, Grain size dependence of tensile properties in nano-polycrystalline diamond. Comp. Mater. Sci. 157, 67–74 (2019)

    Article  Google Scholar 

  15. W.H. Li, E.N. Hahn, X.H. Yao, T.C. Germann, B. Feng, X.Q. Zhang, On the grain size dependence of shock responses in nano-polycrystalline sic ceramics at high strain rates. Acta Mater. 200, 632–651 (2020)

    Article  ADS  Google Scholar 

  16. X.Y. Zhou, X.S. Yang, J.H. Zhu, F. Xing, Atomistic simulation study of the grain-size effect on hydrogen embrittlement of nanograined Fe. Int. J. Hydrogen Energ. 45, 3294–3306 (2020)

    Article  Google Scholar 

  17. P. Hirel, Atomsk: a tool for manipulating and converting atomic data files. Comput. Phys. Commun. 197, 212–219 (2015)

    Article  ADS  Google Scholar 

  18. H. Talebi, M. Silani, S.P.A. Bordas, P. Kerfriden, T. Rabczuk, A computational library for multiscale modeling of material failure. Comput. Mech. 53, 1047–1071 (2014)

    Article  MathSciNet  Google Scholar 

  19. P.R. Budarapu, R. Gracie, S.W. Yang, X.Y. Zhuang, T. Rabczuk, Efficient coarse graing in multiscale modeling of fracture. Theor. Appl. Fract. Mec. 69, 126–143 (2014)

    Article  Google Scholar 

  20. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995)

    Article  ADS  Google Scholar 

  21. Y.M. Kim, B.J. Lee, Modified embedded-atom method interatomic potentials for the Ti-C and Ti-N binary systems. Acta Mater. 56, 3481–3489 (2008)

    Article  ADS  Google Scholar 

  22. A. Stukowski, Structure identification methods for atomistic simulations of crystalline materials. Modell. Simul. Mater. Sci. Eng. 20, 045021 (2012)

    Article  ADS  Google Scholar 

  23. F. Zhang, J.Q. Zhou, Tension-compression asymmetry and twin boundaries spacings effects in polycrystalline Ni nanowires. J. Appl. Phys. 120, 044303 (2016)

    Article  ADS  Google Scholar 

  24. X. Chen, W. Chen, Y. Ma, Y. Zhao, C.Y. Deng, X.H. Peng, T. Fu, Tension-Compression asymmetry of single-crystalline and nanocrystalline NiTi shape memory alloy: an atomic scale study. Mech. Mater. 145, 103402 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the Key Project of Science and Technology Department of Henan Province (Grant No. 142102210508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Pan, A., Hei, R. et al. An atomistic simulation on the tensile and compressive deformation mechanisms of nano-polycrystalline Ti. Appl. Phys. A 127, 362 (2021). https://doi.org/10.1007/s00339-021-04522-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-021-04522-9

Keywords

Navigation