Skip to main content

Advertisement

Log in

Biocompatibility, corrosion, and wear resistance of β titanium alloys for biomedical applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A novel β– Ti-xNb-3.5Sn alloys (x = 33, 36, and 39 wt. % Nb) were made using mechanical alloying of elemental powders by cold isostatic pressing. These powders were blended and then milled at different times using a planetary ball mill. The milled powders were compacted and then consolidated at different temperatures. The produced alloys were characterized as a biomedical material; using a scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) analysis, corrosion, wear resistance, as well as biocompatibility. The results showed that the titanium was completely transformed from (α to (the phase after milling time of 4 h and consolidation temperature of 1000 °C. Good results for both wear resistance, biocompatibility and corrosion resistance came from the addition of niobium. Biocompatibility slightly decreases with increasing the milling time and decreasing the consolidation temperature. This is due to the presence of FeO phase that is coming from ball contamination during the milling process. The wear resistance decreases with increasing both the milling time and consolidation temperature. The good corrosion resistance and adequate wear resistance, further that the investigated alloy is an attractive material for an orthopedic implant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Liu, S. Chen, J.K.H. Tsoi, J.P. Matinlinna, Regen Biomater 1, 315–323 (2017)

    Article  Google Scholar 

  2. D.S.M. Vishnu, J. Sure, R.V. Kumar, C. Schwandt, Mater Trans 60(3), 422–428 (2019)

    Article  Google Scholar 

  3. A. Nouri, P. Hodgson, C. Wen, Mater Sci Eng 31, 921–928 (2011)

    Article  Google Scholar 

  4. M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia, Prog Mater Sci 54, 397–425 (2009)

    Article  Google Scholar 

  5. D. Kalita, Ł Rogal, T. Czeppe, A.W. Jcik, A. Kolano-Burian, P. Zackiewicz, B. Kania, J. Dutkiewicz, J Mater Eng Perform 29, 1445–1452 (2020)

    Article  Google Scholar 

  6. D.M. Gordin, T. Gloriant, Gh. Nemtoi, R. Chelariu, N. Aelenei, A. Guillou, D. Ansel, Mater Lett 59, 2936 (2005)

    Article  Google Scholar 

  7. H.S. Kim, W.Y. Kim, S.H. Lim, Scr Mater 54, 887 (2006)

    Article  Google Scholar 

  8. S. Nag, R. Banerjee, H.L. Fraser, Mater Sci Eng 25, 357–362 (2005)

    Article  Google Scholar 

  9. E. Eisenbarth, D. Velten, M. Muller, R. Thull, J. Breme, Biomaterials 25, 5705–5713 (2004)

    Article  Google Scholar 

  10. Y. Mantani, M. Tajima, Mater Sci Eng A 315, 438–440 (2006)

    Google Scholar 

  11. E. Takahashi, T. Sakurai, S. Watanabe, N. Masahashi, S. Hanada, Mater Trans 43(12), 2978 (2002)

    Article  Google Scholar 

  12. H.Y. Kim, J.I. Kim, T. Inamura, H. Hosoda, S. Miyazaki, Mater Sci Eng A 1, 438–440 (2006)

    Google Scholar 

  13. M.T. Mohammed, Z.A. Khan, A.N. Siddiquee, Internat J Chem Nuclear Meta Mater Eng 8, 120–345 (2014)

    Google Scholar 

  14. K. Maehara, K. Doi, T. Matsushita, Y. Sasaki, Mater Trans 43, 2936 (2002)

    Article  Google Scholar 

  15. D.J. Lin, J.H.C. Lin, C.P. Ju, Biomaterials 23, 1723 (2002)

    Article  Google Scholar 

  16. M.J. Donachie, Introduction to Titanium and Titanium Alloys (American Society for Metals Titanium and Titanium Alloys, Metals Park, OH, 1982).

    Google Scholar 

  17. C.M. Lee, C.P. Ju, JH Chern Lin. J Oral Rehab 29, 314–322 (2002)

    Article  Google Scholar 

  18. M. Jackson, K. Dring, Mater Sci Technol 22(8), 881–887 (2006)

    Article  Google Scholar 

  19. L. Yuhua, Y. Chao, Z. Haidong, Q. Shengguan, L. Xiaoqiang, L. Yuanyuan, Materials 7, 1709–1800 (2014)

    Article  Google Scholar 

  20. J.L. Murray, Phase Diagrams of Binary Titanium Alloys (ASM, Metals Park, OH, 1987).

    Google Scholar 

  21. P.E.L. Moraes, R.J. Contieri, E.S.N. Lopes, A. Robin, R. Caram, Mater Char 96, 273–281 (2014)

    Article  Google Scholar 

  22. A.M. Omran, K.D. Woo, D.K. Kim, S.W. Kim, M.S. Moon, N.A. Barakat, D.L. Zhan, Met Mater Int 14–3, 321–325 (2008)

    Article  Google Scholar 

  23. A.M. Omran et al., Sci Adv Mater 1, 205–211 (2009)

    Article  Google Scholar 

  24. G. Lütjering, J.C. Williams, Titanium (Springer-Verlag, Berlin, 2003)

    Book  Google Scholar 

  25. E. P. Utomo, A. Anawati, F. Rokhmanto, Effect of Sn on corrosion resistance and modulus young of as-cast Ti-Nb-Sn alloys for biocompatible implant. AIP Conference Proceedings vol. 2232, 070007 (2020). https://doi.org/10.1063/5.0002699

  26. M. Michalak, G. Bytomski, Solid solutions – a hume-rothery condition in the context of the set-theoretic notion of binary relation. 17th International Multidisciplinary Scientific Geoconference Sgem, SGEM2017 Conference Proceedings, ISBN 978-619-7408-12-6 / ISSN 1314-2704, Vol. 17, Issue 61, 29 June–5 July 2017, pp 301–306. https://doi.org/10.5593/sgem2017/61/S24.040

  27. I. Çaha, A.C. Alves, P.A.B. Kuroda, C.R. Grandini, A.M.P. Pinto, L.A. Rocha, F. Topta, Corrosion Sci 167, 108488 (2020)

    Article  Google Scholar 

  28. L.M. Elias, S.G. Schneider, S. Schneider, H.M. Silva, F. Malvisi, Mater Sci Eng A 432, 108 (2006)

    Article  Google Scholar 

  29. W. Elshahawy, I. Watanabe, Tanta Dental J 11, 150–159 (2014)

    Article  Google Scholar 

  30. M.-K. Han, J.-Y. Kim, M.-J. Hwang, H.-J. Song, Y.-J. Park, Mater 8, 5986–6003 (2015). https://doi.org/10.3390/ma8095287

    Article  Google Scholar 

  31. A. Choubey, R. Balasubramaniam, B. Basu, J Alloys Compd 381, 288 (2004)

    Article  Google Scholar 

  32. S. Ehtemam-Haghighi et al., Mater Des 111, 592–599 (2016)

    Article  Google Scholar 

  33. C. Yuyonga, W. Xiaopenga, X. Lijuana, L. Zhiguanga, K.D. Woob, J Mech BehavBiomed Mater 10, 97–107 (2012)

    Article  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Nasser Omran.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omran, AN., Ali, M.M. & Kh, M.M. Biocompatibility, corrosion, and wear resistance of β titanium alloys for biomedical applications. Appl. Phys. A 126, 942 (2020). https://doi.org/10.1007/s00339-020-04118-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04118-9

Keywords

Navigation