Skip to main content
Log in

Effects of cadmium ion concentration on the optical and photo-response properties of CdSe/PVP nanocomposites for white light sensing application

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Cadmium selenide (CdSe) nanoparticles dispersed in the PVP matrix with varying concentrations of cadmium (Cd) ion complex have been synthesized through a low-cost chemical bath deposition technique to investigate the effects of cadmium ion concentration on its optical and photo-response characteristics. To confirm the formation of pure, stable, well dispersed, and highly crystalline spherical CdSe nanocomposites different characterization techniques such as X-ray diffraction, field emission scanning electron microscopy, high-resolution transmission electron microscopy, and Fourier transform infrared spectroscopy have been used. The optical band gaps and sizes of the nanocomposites are determined from the UV–Vis data while the surface-related emission properties of the CdSe nanocomposites are obtained from the PL data. The quantum confinement on the CdSe nanocomposites increases with the decrease of Cd ion concentration. I–V characteristics measurements have been done on the samples to investigate the photo-response properties of the samples. Various optical properties such as bandgap, near bandgap emission, and impurity emission are correlated with the photo-response properties of the samples. The photoresponse properties are found to become more suitable for application in white light photosensor with the increase of quantum confinement. Mechanisms related to the enhancement of photocurrent with respect to quantum confinement are also discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. H. Luo, B.A. Kebede, E.J. McLaurin, V. Chikan, Rapid induction and microwave heat-up syntheses of CdSe quantum dots. ACS Omega 3(5), 5399–5405 (2018)

    Google Scholar 

  2. P.K. Sahu, R. Das, R. Lalwani, Incorporation of tin in nanocrystalline CdSe thin films: a detailed study of optoelectronic and microstructural properties. Appl. Phys. A Mater. Sci. Process. 24(665), 01–13 (2018)

    Google Scholar 

  3. S. Yadav, A. Singh, L. Thulasidharan, S. Sapra, Surface decides the photoluminescence of colloidal CdSe nanoplatelets based core/shell heterostructures. J. Phys. Chem. C 122(1), 820–829 (2018)

    Google Scholar 

  4. V. Babentsov, F. Sizov, Defects in quantum dots of II-VI semiconductors. Opto-electron Rev. 16, 208–225 (2006)

    ADS  Google Scholar 

  5. N. Ordenes-Aenishanslins et al., Biological synthesis of CdS/CdSe core/shell nanoparticles and its application in quantum dot sensitize solar cells, 10, 1587 (2019) 1–10

  6. S. Sadeghi, S.K. Abkenar, C.W. Ow-Yang, S. Nizamoglu, Efficient white LEDs using liquid-State Magic sized CdSe Quantum Dots. Sci. Rep 9, 1–9 (2019)

    ADS  Google Scholar 

  7. C. Li, F. Wang, Y. Chen, L. Wu, X. He, B. Li, L. Feng, Characterization of sputtered CdSe thin films as the window layer for CdTe solar cells. Mater. Sci. Semicond. Process 83, 89–95 (2018)

    Google Scholar 

  8. D. Zhu, H. Ye, H. Zhen, X. Liu, Improved performance in green light-emitting diodes made with CdSe conjugated polymer composite. Synth. Met. 158, 879–882 (2008)

    Google Scholar 

  9. Y.P. Wei, X.P. Liu, C.J. Mao, H.L. Niu, J.M. Song, B.K. Jin, Highly sensitive electrochemical biosensor for streptavidin detection based on CdSe quantum dots. Biosens. Bioelectron. 103, 99–103 (2018)

    Google Scholar 

  10. R.B. Kale, C.D. Lokhande, Band gap shift, structural characterization and phase transformation of CdSe thin films from nanocrystalline cubic to nanorod hexagonal on air annealing. Semicond. Sci. Technol. 20, 1–9 (2004)

    ADS  Google Scholar 

  11. Q. Shen, D. Arae, T. Toyoda, Photosensitization of nanostructured TiO2 with CdSe quantum dots: effects of microstructure and electron transport in TiO2 substrates. J. Photochem. Photobiol. A 164, 75–80 (2004)

    Google Scholar 

  12. X. Zheng, Y. Xie, L. Zhu, X. Jiang, A. Yan, Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution. Ultrasonics Sonochem. 9, 311–316 (2002)

    Google Scholar 

  13. O. Palchik, R. Kerner, A. Gedanken, A.M. Weiss, M.A. Slifkin, V. Palchik, Microwave-assisted polyol method for the preparation of CdSe nanoballs. J. Mater. Chem 11, 874–878 (2001)

    Google Scholar 

  14. M. Sharma, S. Kumar, O.P. Pandey, Photo-physical and morphological studies of organically passivated core–shell ZnS nanoparticles. Dig. J. Nanomater. Bios. 3(4), 189–197 (2008)

    Google Scholar 

  15. W. Jin, L. Hu, Review on quasi one-dimensional cdse nanomaterials: synthesis and application in photodetectors. Nanomaterials 9, 1–19 (2019)

    Google Scholar 

  16. H. Yu, J. Li, R.A. Loomis, P.C. Gibbons, L.W. Wang, W.E. Buhro, Cadmium selenide quantum wires and the transition from 3D to 2D confinement. J. Am. Chem. Soc. 125, 16168–16169 (2003)

    Google Scholar 

  17. Z. Gao, W. Jin, Y. Zhou, Y. Dai, B. Yu, C. Liu, W. Xu, Y. Li, H. Peng, Z. Liu et al., Self- powered flexible and transparent photovoltaic detectors based on CdSe nanobelt/graphene Schottky junctions. Nanoscale 5, 5576–5581 (2013)

    ADS  Google Scholar 

  18. W. Jin, K. Zhang, Z. Gao, Y. Li, L. Yao, Y. Wang, L. Dai, CdSe nanowire-based flexible devices: Schottky diodes, metal–semiconductor field-effect transistors, and inverters. ACS Appl. Mater. Interfaces 7, 13131–13136 (2015)

    Google Scholar 

  19. T. Zhai, L. Li, X. Wang, X. Fang, Y. Bando, D. Golberg, Recent developments in one-dimensional inorganic nanostructures for photodetectors. Adv. Funct. Mater 20, 4233–4248 (2010)

    Google Scholar 

  20. K. Senthilkumar, T. Kalaivani, S. Kanagesan, V. Balasubramanian, Synthesis and characterization studies of ZnSe quantum dots. J. Mater. Sci. Mater. Electron. 23, 2048–2052 (2012)

    Google Scholar 

  21. P. Li, B. Zhu, P. Li, Z. Zhang, L. Li, Y. Gu, A facile method to synthesize CdSe-reduced graphene oxide composite with good dispersion and high Nonlinear optical properties. Nanomaterials 9(957), 1–13 (2019)

    Google Scholar 

  22. R. Divya, N. Manikandan, T.C. Sabari Girisun, G. Vinitha, Investigations on the structural, morphological, linear and third order nonlinear optical properties of manganese doped zinc selenide nanoparticles for optical limiting application. Opt. Mater 100(109641), 1–13 (2020)

    Google Scholar 

  23. L. Saravanan, S. Diwakar, R. Mohankumar, A. Pandurangan, R. Jayavel, Synthesis, structural and optical properties of PVP encapsulated CdS nanoparticles. Nanomater. Nanotechnol. 1(2), 42–48 (2011)

    Google Scholar 

  24. K.F. Chepape, T.P. Mofokeng, P. Nyamukamba, K.P. Mubiayi, M.J. Moloto, Enhancing photocatalytic degradation of methyl blue using PVP-capped and uncapped CdSe nanoparticles. J. Nanotechnol. 5340784, 1–6 (2017)

    Google Scholar 

  25. M. Safo, C.D. Werheid, M. Oezaslan, The role of polyvinylpyrrolidone (PVP) as a capping and structure-directing agent in the formation of Pt nanocubes. Nanoscale Adv. 1, 3095–3106 (2019)

    ADS  Google Scholar 

  26. N.B. Brahim, N.B.H. Mohamed, M. Echabaane, M. Haouari, R.B. Chabaane, M. Nigrerie, H.B. Quada, Thioglycerol -functionalized CdSe quantum dots detecting cadmium ions. Sens. Actuators B Chem 220, 1346–1353 (2015)

    Google Scholar 

  27. J. Henry, T. Daniel, V. Balasubramanian, K. Mohanraj, G. Sivakumar, Enhanced photosensitivity of bi-doped Cu2Se thin films prepared by chemical synthesis for solar cell application. Iran J Sci Technol Trans Sci, 2020, 1–9

  28. Muthukannan, G. Sivakumar, and K. Mohanraj, Influence of Equimolar Concentration on Structural and Optical Properties of Binary Selenides Nanoparticles, Particulate Science and Technology, 32 (2014) 392–398

  29. A. Mukhergee and S. Ghosh, Optimum excitation photon energy for CdSe–ZnS core–shell quantum dot based luminescence imaging, J. Phys. D: Appl. Phys. 45, 195103 (2012) 1-5

    Google Scholar 

  30. S. Mathew, V.R. Anand, A.A. Correya, V.P.N. Nampoori, A. Mujeeb, Surface defect assisted broad spectra emission from CdSe quantum dots for white LED application. Mater. Res. Express 5, 025009 (2018)

    ADS  Google Scholar 

  31. E. Kucur, W. Bucking, T. Nann, Electrochemical determination of mesoscopic phenomena, defect states in CdSe nanocrystals and charge carrier manipulability. Microchim Acta 160, 299–308 (2008)

    Google Scholar 

  32. E. Kuçur, W. Bücking, R. Giernoth, T. Nann, Determination of defect states in semiconductor nanocrystals by cyclic voltammetry. J. Phys. Chem. B 109(43), 20355–20360 (2005)

    Google Scholar 

  33. S. Mathew, S.A. Joseph, P. Radhakrishnan, V.P.N. Nampoori, C.P.G. Vallabhan, Shifting of fluorescence peak in CdS nanoparticles by excitation wavelength change. J Fluoresc 21, 1479–1484 (2011)

    Google Scholar 

  34. M.J. Bowers, J.R. McBride, S.J. Rosenthal, White-light emission from magic-sized cadmium selenide nanocrystals. J. Am. Chem. Soc. 127, 15378–15379 (2005)

    Google Scholar 

  35. N.A. Hill, K.B. Whaley, A theoretical study of the influence of the surface on the electronic structure of CdSe nanoclusters. J. Chern. Phys. 100(4), 2831–2837 (1994)

    ADS  Google Scholar 

  36. N. Prasad, B. Karthikeyan, Phase-dependent structural, optical, phonon and UV sensing properties of ZnS nanoparticles. Nanotechnology 30, 485702–485716 (2019)

    Google Scholar 

  37. P.T. Gomathi, P. Sahatiya, S. Badhulika, Large-area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate. Adv. Funct. Mater. 1701611, 1–9 (2017)

    Google Scholar 

  38. L. Hu, J. Yan, M. Liao, H. Xiang, X. Gong, L. Zhang, X. Fang, An optimized ultraviolet-A light photodetector with wide-range photoresponse based on ZnS/ZnO biaxial nanobelt. Adv. Mater. 24, 2305–2309 (2012)

    Google Scholar 

  39. J.S. Jie, W.J. Zhang, Y. Jiang, X.M. Meng, Y.Q. Li, S.T. Lee, Photoconductive characteristics of single-crystal CdS nanoribbons. Nano Lett. 6, 1887–1892 (2006)

    ADS  Google Scholar 

  40. M. Hajimazdarani, N. Naderi, B. Yarmand, Effect of temperature-dependent phase transformation on UV detection properties of zinc sulfide nanocrystals. Mater. Res. Express 6(085096), 1–9 (2019)

    Google Scholar 

  41. W. Zhao, L. Liu, M. Xu, X. Wang, T. Zhang, Y. Wang, Z. Zhang, S. Qin, Z. Liu, Single CdS nanorod for high responsivity UV–Visible photodetector. Adv. Opt. Mater. 1700159, 1–7 (2017)

    ADS  Google Scholar 

  42. X. Li, M. Zhu, M. Du, Z. Lv, L. Zhang, Y. Li, Y. Yang, T. Yang, X. Li, K. Wang, H. Zhu, Y. Fang, High detectivity graphene-silicon heterojunction photodetector. Small 12(5), 595–601 (2016)

    Google Scholar 

  43. Q. Hong, Y. Cao, J. Xu, H. Lu, J. He, J.L. Sun, Self-powered ultrafast broadband photodetector based on p-n heterojunctions of CuO/Si Nanowire Array. ACS Appl. Mater. Interfaces 6, 20887–20894 (2014)

    Google Scholar 

  44. M. Patel, H.S. Kim, J. Kim, All transparent metal oxide ultraviolet photodetector. Adv. Electron. Mater 1500232(1), 1–9 (2015)

    Google Scholar 

Download references

Acknowledgements

Authors sincerely thank the Department of chemistry, Department of Physics Rajiv Gandhi University and Saif, Gauhati University for providing the necessary experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Handique.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Handique, K.C., Kalita, P.K. Effects of cadmium ion concentration on the optical and photo-response properties of CdSe/PVP nanocomposites for white light sensing application. Appl. Phys. A 126, 755 (2020). https://doi.org/10.1007/s00339-020-03934-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03934-3

Keywords

Navigation