Skip to main content
Log in

Nitrogen-doped carbon dots-modified Prussian blue with sandwich-like structure as a high-performance electrochromic material

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Prussian blue (PB), as a promising inorganic electrochromic material (ECM), has been widely used in smart windows, displays, sensors, etc. However, there are still many challenges for PB to achieve high electrochromic performance. Herein, we synthesized nitrogen-doped carbon dots-modified PB film (defined as PB@N-CDs) with a sandwich-like structure by a simple stepwise electrodeposition method. The carbon dots show an obvious advantage in ultrafast electron transfer ability, which can reduce charge loss during the transfer process, improve the electrochemical activity on both sides of PB, and thus facilitate a rapid electrochromic response. Furthermore, the surface of nitrogen-doped carbon dots contains multiple organic functional groups, which widen the movement path of K+ ions under electrostatic adsorption. Impressively, the PB@N-CDs film exhibits a short bleaching/coloring time (0.5/0.9 s) and a superior optical modulation range (78.6%). Particularly, the coloring efficiency has been significantly improved to 137.71 cm2/C (at 700 nm). All of these results open up new avenues for developing high-performance PB-based ECMs and promoting their applications in corresponding electrochromic devices (ECDs) and smart windows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su, L. Y.; Lu, Z. H.; Wei, Y. An all solid-state electrochromic smart window. Chin. Sci. Bull. 1998, 43, 944–947.

    Article  CAS  Google Scholar 

  2. Kim, Y.; Han, M. S.; Kim, J.; Kim, E. Electrochromic capacitive windows based on all conjugated polymers for a dual function smart window. Energy Environ. Sci. 2018, 11, 2124–2133.

    Article  CAS  Google Scholar 

  3. Kim, H. N.; Cho, S. M.; Ah, C. S.; Song, J.; Ryu, H.; Kim, Y. H.; Kim, T. Y. Electrochromic mirror using viologen-anchored nanoparticles. Mater. Res. Bull. 2016, 82, 16–21.

    Article  CAS  Google Scholar 

  4. Yan, C. Y.; Kang, W. B.; Wang, J. X.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Stretchable and wearable electrochromic devices. ACS Nano 2014, 8, 316–322.

    Article  CAS  Google Scholar 

  5. Gu, C.; Jia, A. B.; Zhang, Y. M.; Zhang, S. X. A. Emerging electrochromic materials and devices for future displays. Chem. Rev. 2022, 122, 14679–14721.

    Article  CAS  Google Scholar 

  6. Chen, K.; He, J. Z.; Zhang, D.; You, L. Y.; Li, X. F.; Wang, H. Y.; Mei, J. G. Bioinspired dynamic camouflage from colloidal nanocrystals embedded electrochromics. Nano Lett. 2021, 21, 4500–4507.

    Article  CAS  Google Scholar 

  7. Yun, T. Y.; Li, X. L.; Kim, S. H.; Moon, H. C. Dual-function electrochromic supercapacitors displaying real-time capacity in color. ACS Appl. Mater. Interfaces 2018, 10, 43993–43999.

    Article  CAS  Google Scholar 

  8. Patel, K. J.; Bhatt, G. G.; Ray, J. R.; Suryavanshi, P.; Panchal, C. J. All-inorganic solid-state electrochromic devices: A review. J. Solid State Electrochem. 2017, 21, 337–347.

    Article  CAS  Google Scholar 

  9. Gu, C.; Wang, S.; He, J. L.; Zhang, Y. M.; Zhang, S. X. A. High-durability organic electrochromic devices based on in-situ-photocurable electrochromic materials. Chem. 2023, 9, 2841–2854.

    Article  CAS  Google Scholar 

  10. Tong, X. R.; Wang, J. H.; Zhang, P.; Lei, P. Y.; Gao, Y.; Ren, R. R.; Zhang, S. Y.; Zhu, R.; Cai, G. F. Insight into the structure-activity relationship in electrochromism of WO3 with rational internal cavities for broadband tunable smart windows. Chem. Eng. J. 2023, 470, 144130.

    Article  CAS  Google Scholar 

  11. Wang, J. Y.; Zhao, W. X.; Tam, B.; Zhang, H. W.; Zhou, Y. R.; Yong, L.; Cheng, W. Pseudocapacitive porous amorphous vanadium pentoxide with enhanced multicolored electrochromism. Chem. Eng. J. 2023, 452, 139655.

    Article  CAS  Google Scholar 

  12. Wen, R. T.; Granqvist, C. G.; Niklasson, G. A. Anodic electrochromism for energy-efficient windows: Cation/anion-based surface processes and effects of crystal facets in nickel oxide thin films. Adv. Funct. Mater. 2015, 25, 3359–3370.

    Article  CAS  Google Scholar 

  13. Li, H. Z.; McRae, L.; Elezzabi, A. Y. Solution-processed interfacial PEDOT: PSS assembly into porous tungsten molybdenum oxide nanocomposite films for electrochromic applications. ACS Appl. Mater. Interfaces 2018, 10, 10520–10527.

    Article  CAS  Google Scholar 

  14. Ma, Q.; Chen, J. X.; Zhang, H.; Su, Y. W.; Jiang, Y. J.; Dong, S. J. Dual-function self-powered electrochromic batteries with energy storage and display enabled by potential difference. ACS Energy Lett. 2023, 8, 306–313.

    Article  CAS  Google Scholar 

  15. Qian, J. H.; Ma, D. Y.; Xu, Z. P.; Li, D.; Wang, J. M. Electrochromic properties of hydrothermally grown Prussian blue film and device. Sol. Energy Mater. Sol. Cells 2018, 177, 9–14.

    Article  CAS  Google Scholar 

  16. Isfahani, V. B.; Memarian, N.; Dizaji, H. R.; Arab, A.; Silva, M. M. The physical and electrochromic properties of Prussian blue thin films electrodeposited on ITO electrodes. Electrochim. Acta 2019, 304, 282–291.

    Article  CAS  Google Scholar 

  17. Hedley, L.; Porteous, L.; Hutson, D.; Robertson, N.; Johansson, J. O. Electrochromic bilayers of Prussian blue and its Cr analogue. J. Mater. Chem. C 2018, 6, 512–517.

    Article  CAS  Google Scholar 

  18. Liao, H. Y.; Liao, T. C.; Chen, W. H.; Chang, C. H.; Chen, L. C. Molybdate hexacyanoferrate (MoOHCF) thin film: A brownish red Prussian blue analog for electrochromic window application. Sol. Energy Mater. Sol. Cells 2016, 145, 8–15.

    Article  CAS  Google Scholar 

  19. Tajima, K.; Kubota, T.; Jeong, C. Y. Preparation of electrochromic thin films by humidity-controlled spin coating. Thin Solid Films 2022, 758, 139412.

    Article  CAS  Google Scholar 

  20. Kim, S. Y.; Yun, T. Y.; Yu, K. S.; Moon, H. C. Reliable, high-performance electrochromic supercapacitors based on metal-doped nickel oxide. ACS Appl. Mater. Interfaces 2020, 12, 51978–51986.

    Article  CAS  Google Scholar 

  21. Hasani, A.; Le, Q. V.; Nguyen, T. P.; Choi, K. S.; Sohn, W.; Jang, H. W.; Kim, S. Y. A thorough study on electrochromic properties of metal doped tungsten trioxide film prepared by a facile solution process. Electrochim. Acta 2018, 283, 1195–1202.

    Article  CAS  Google Scholar 

  22. Hassan, M.; Abbas, G.; Lu, Y.; Wang, Z. Y.; Peng, Z. C. A smart flexible supercapacitor enabled by a transparent electrochromic electrode composed of W18O49 nanowires/rGO composite films. J. Mater. Chem. A 2022, 10, 4870–4880.

    Article  CAS  Google Scholar 

  23. Neff, V. D. Electrochemical oxidation and reduction of thin films of Prussian blue. J. Electrochem. Soc. 1978, 125, 886–887.

    Article  CAS  Google Scholar 

  24. Xu, H. B.; Gong, L. T.; Zhou, S. Y.; Cao, K. L.; Wang, S.; Zhao, J. P.; Li, Y. Enhancing the electrochromic stability of Prussian blue based on TiO2 nanorod arrays. New J. Chem. 2020, 44, 2236–2240.

    Article  CAS  Google Scholar 

  25. Meng, Y.; Li, Z. X.; Liu, Z. F. Enhanced electrochromic properties of inorganic-organic tungsten oxide and Prussian blue core-shell film. J. Mater. Sci.: Mater. Electron. 2022, 33, 24995–25005.

    CAS  Google Scholar 

  26. Xu, L. Q.; Li, J. Y.; Li, L.; Luo, Z.; Xiang, Y. E.; Deng, W. N.; Zou, G. Q.; Hou, H. S.; Ji, X. B. Carbon dots evoked li ion dynamics for solid state battery. Small 2021, 17, 2102978.

    Article  CAS  Google Scholar 

  27. Du, J. J.; Xu, N.; Fan, J. L.; Sun, W.; Peng, X. J. Carbon dots for in vivo bioimaging and theranostics. Small 2019, 15, 1805087.

    Article  Google Scholar 

  28. Shejale, K. P.; Jaiswal, A.; Kumar, A.; Saxena, S.; Shukla, S. Nitrogen doped carbon quantum dots as Co-active materials for highly efficient dye sensitized solar cells. Carbon 2021, 183, 169–175.

    Article  CAS  Google Scholar 

  29. Tang, Q. W.; Zhu, W. L.; He, B. L.; Yang, P. Z. Rapid conversion from carbohydrates to large-scale carbon quantum dots for all-weather solar cells. ACS Nano 2017, 11, 1540–1547.

    Article  CAS  Google Scholar 

  30. Eivazzadeh-Keihan, R.; Bahojb Noruzi, E.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Ghafori Gorab, M.; Masoud Hashemi, S.; Javanshir, S.; Ahangari Cohan, R. et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183.

    Article  CAS  Google Scholar 

  31. Duan, Q. Q.; Si, S.; Sang, S. B.; Wang, J. L.; Zhang, B. Y.; Guan, Z. W.; Jia, M. Y.; Xue, J. J. Study on the photothermal performance of supra-(carbon nanodots) developed with dicyandiamide N-doped. Colloids Surf. A Physicochem. Eng. Aspects 2022, 648, 129346.

    Article  CAS  Google Scholar 

  32. Wang, Y. G.; Gong, Z. M.; Zeng, Y.; Zhao, H. L.; Yang, J. K. High-properties electrochromic device based on TiO2@graphene/Prussian blue core-shell nanostructures. Chem. Eng. J. 2022, 431, 134066.

    Article  CAS  Google Scholar 

  33. Zhang, X.; Shen, Y. T.; Xu, S. P.; Yue, J.; Guo, Q.; Huang, D. S.; Yang, B.; Shi, W.; Liang, C. Y.; Xu, W. Q. Intracellular pH-propelled assembly of smart carbon nanodots and selective photothermal therapy for cancer cells. Colloids Surf. B Biointerf. 2020, 188, 110724.

    Article  CAS  Google Scholar 

  34. Yin, Q.; Kelsall, G. H.; Vaughan, D. J.; England, K. E. R. Atmospheric and electrochemical oxidation of the surface of chalcopyrite (CuFeS2). Geochim. Cosmochim. Acta 1995, 59, 1091–1100.

    Article  CAS  Google Scholar 

  35. Langevoort, J. C.; Sutherland, I.; Hanekamp, L. J.; Gellings, P. J. On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS. Appl. Surf. Sci. 1987, 28, 167–179.

    Article  CAS  Google Scholar 

  36. Srivastava, S.; Badrinarayanan, S.; Mukhedkar, A. J. X-ray photoelectron spectra of metal complexes of substituted 2,4-pentanediones. Polyhedron 1989, 4, 409–414.

    Article  Google Scholar 

  37. Brant, P.; Feltham, R. D. X- ray photoelectron spectra of iron complexes: Correlation of iron 2p satellite intensity with complex spin state. J. Electron Spectrosc. Relat. Phenom. 1983, 32, 205–221.

    Article  CAS  Google Scholar 

  38. Tang, J.; Xu, R. P.; Sui, G. X.; Guo, D. X.; Zhao, Z. L.; Fu, S. S.; Yang, X.; Li, Y.; Li, J. L. Double-shelled porous g-C3N4 nanotubes modified with amorphous Cu-doped FeOOH nanoclusters as 0D/3D non-homogeneous photo-Fenton catalysts for effective removal of organic dyes. Small 2023, 15, 2208232.

    Article  Google Scholar 

  39. Mansour, A. N.; Ko, J. K.; Waller, G. H.; Martin, C. A.; Zhang, C.; Qiao, X. Y.; Wang, Y. C.; Zhou, X.; Balasubramanian, M. Structural analysis of K4Fe(CN)63H2O, K3Fe(CN)6 and Prussian blue. ECS J. Solid State Sci. Technol. 2021, 10, 103002.

    Article  CAS  Google Scholar 

  40. Lee, T. H.; Rabalais, J. W. X- ray photoelectron spectra and electronic structure of some diamine compounds. J. Electron Spectrosc. Relat. Phenom. 1977, 11, 123–127.

    Article  CAS  Google Scholar 

  41. Yatsimirskii, K. B.; Nemoshkalenko, V. V.; Nazarenko, Y. P.; Aleshin, V. G.; Zhilinskaya, V. V.; Tomashevsky, N. A. Use of X-ray photoelectron and Mö ssbauer spectroscopies in the study of iron pentacyanide complexes. J. Electron Spectrosc. Relat. Phenom. 1977, 10, 239–245.

    Article  CAS  Google Scholar 

  42. Hu, C. W.; Sato, T.; Zhang, J.; Moriyama, S.; Higuchi, M. Three-dimensional Fe(II)-based metallo-supramolecular polymers with electrochromic properties of quick switching, large contrast, and high coloration efficiency. ACS Appl. Mater. Interfaces 2014, 6, 9118–9125.

    Article  CAS  Google Scholar 

  43. Yan, S. M.; Fu, H. C.; Dong, Y. J.; Li, W. J.; Dai, Y. Y.; Zhang, C. Synthesis, electrochemistry and electrochromic properties of donor-acceptor conjugated polymers based on swivel-cruciform monomers with different central cores. Electrochim. Acta 2020, 354, 136672.

    Article  CAS  Google Scholar 

  44. Dai, Y. Y.; Li, W. J.; Qu, X. X.; Liu, J.; Yan, S. M.; Ouyang, M.; Lv, X. J.; Zhang, C. Electrochemistry, electrochromic and color memory properties of polymer/copolymer based on novel dithienylpyrrole structure. Electrochim. Acta 2017, 229, 271–280.

    Article  CAS  Google Scholar 

  45. Xu, M.; Wang, S.; Zhou, S. Y.; Sun, W. H.; Ding, Z. M.; Zhang, X.; Zhao, J. P.; Li, Y. Construction of TiO2@C@Prussian blue core-shell nanorod arrays for enhanced electrochromic switching speed and cycle stability. J. Alloys Compd. 2022, 908, 164410.

    Article  CAS  Google Scholar 

  46. Xu, M.; Li, K.; Wang, S.; Zhou, S. Y.; Zhang, H. L.; Xu, H. B.; Zhao, J. P.; Li, Y. Designing TiO2/Au/Prussian blue heterostructures nanorod arrays for ultra-stable cycle and ultra-fast response electrochromism. Nano Res. 2023, 16, 3294–3303.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Jiangsu Specially Appointed Professor program, the Tsinghua-Toyota Joint Research Fund, and the National Key Research and Development Program of China (Nos. 2020YFC2201103 and 2020YFA0210702).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jingfa Li or Rufan Zhang.

Electronic Supplementary Material

12274_2024_6415_MOESM1_ESM.pdf

Nitrogen-doped carbon dots-modified Prussian blue with sandwich-like structure as a high-performance electrochromic material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, L., Zhao, S. et al. Nitrogen-doped carbon dots-modified Prussian blue with sandwich-like structure as a high-performance electrochromic material. Nano Res. (2024). https://doi.org/10.1007/s12274-024-6415-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12274-024-6415-x

Keywords

Navigation