Skip to main content
Log in

Synthesis of high-saturation magnetization composites by montmorillonite loading with hexadecyl trimethyl ammonium ions and magnetite nucleation for improved effluent sludge handling and dye removal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organomagnetic clays have been designed and synthesized from montmorillonite loaded with hexadecyl trimethyl ammonium ions (HDTMA+), to be used in water treatment systems to minimize the direct manipulation of effluent sludge dyes. The structural, magnetic, and hyperfine properties have been determined using thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, zeta potential measurement, Mössbauer spectroscopy, and a vibrating sample magnetometer. The Methylene blue and Ponceau 4R (P4R) removal efficiency has been analyzed in batch conditions. The 58% HDTMA+-loaded composite exhibits a saturation magnetization three times higher than the composite without HDTMA+, while the surfactant incorporation improved P4R adsorption. The proper HDTMA+ loading improves the saturation magnetization and the adsorption capacity of the composites, thus yielding added-value materials from two points of view, magnetic response and dye adsorption capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. F.M. Flores, L.T. Undabeytia, G.E. Morillo, S.R.M. Torres, Pyrimethanil adsorption on montmorillonite and organo-montmorillonite. Kinetic Equilib Study (2017). https://doi.org/10.13039/501100003074

    Article  Google Scholar 

  2. M. Gamba, F.M. Flores, J. Madejová, R.M. Torres Sánchez, Comparison of imazalil removal onto Montmorillonite and Nanomontmorillonite and adsorption surface sites involved: an approach for agricultural wastewater treatment. Ind Eng Chem Res 54, 1529–1538 (2015). https://doi.org/10.1021/ie5035804

    Article  Google Scholar 

  3. M. Khajeh, A. Ghaemi, Nanoclay montmorillonite as an adsorbent for CO2 capture: experimental and modeling. J Chin Chem Soc 67, 253–266 (2020). https://doi.org/10.1002/jccs.201900150

    Article  Google Scholar 

  4. J.L. Marco-Brown, M.M. Areco, R.M. Torres Sánchez, M. dos Santos Afonso, Adsorption of picloram herbicide on montmorillonite: Kinetic and equilibrium studies. Colloids Surf Physicochem Eng Asp 4, 49 (2014). https://doi.org/10.1016/j.colsurfa.2014.02.038

    Article  Google Scholar 

  5. F. Liu, K. Zhou, Q. Chen, A. Wang, W. Chen, Comparative study on the synthesis of magnetic ferrite adsorbent for the removal of Cd(II) from wastewater. Adsorpt Sci Technol 36, 1456–1469 (2018). https://doi.org/10.1177/0263617418779729

    Article  Google Scholar 

  6. M.A. Ahmed, S.M. Ali, S.I. El-Dek, A. Galal, Magnetite–hematite nanoparticles prepared by green methods for heavy metal ions removal from water. Mater Sci Eng B 178, 744–751 (2013). https://doi.org/10.1016/j.mseb.2013.03.011

    Article  Google Scholar 

  7. L. Giraldo, A. Erto, J.C. Moreno-Piraján, Magnetite nanoparticles for removal of heavy metals from aqueous solutions: synthesis and characterization. Adsorption 19, 465–474 (2013). https://doi.org/10.1007/s10450-012-9468-1

    Article  Google Scholar 

  8. J. Giménez, M. Martínez, J. de Pablo, M. Rovira, L. Duro, Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141, 575–580 (2007). https://doi.org/10.1016/j.jhazmat.2006.07.020

    Article  Google Scholar 

  9. A. Muhammad, A.-H.A. Shah, S. Bilal, G. Rahman, Basic blue dye adsorption from water using polyaniline/magnetite (Fe3O4) composites: kinetic and thermodynamic aspects. Materials 12, 1764 (2019). https://doi.org/10.3390/ma12111764

    Article  ADS  Google Scholar 

  10. Y. Subba Reddy, C. Maria Magdalane, K. Kaviyarasu, G.T. Mola, J. Kennedy, M. Maaza, Equilibrium and kinetic studies of the adsorption of acid blue 9 and Safranin O from aqueous solutions by MgO decked FLG coated Fuller’s earth. J Phys Chem Solids 123, 43–51 (2018). https://doi.org/10.1016/j.jpcs.2018.07.009

    Article  ADS  Google Scholar 

  11. K. Kaviyarasu, C. Maria Magdalane, D. Jayakumar, Y. Samson, A.K.H. Bashir, M. Maaza, D. Letsholathebe, A.H. Mahmoud, J. Kennedy, High performance of pyrochlore like Sm2Ti2O7 heterojunction photocatalyst for efficient degradation of rhodamine-B dye with waste water under visible light irradiation. J King Saud Univ Sci 32, 1516–1522 (2020). https://doi.org/10.1016/j.jksus.2019.12.006

    Article  Google Scholar 

  12. C. Maria Magdalane, K. Kaviyarasu, N. Matinise, N. Mayedwa, N. Mongwaketsi, D. Letsholathebe, G.T. Mola, N. AbdullahAl-Dhabi, M.V. Arasu, M. Henini, J. Kennedy, M. Maaza, B. Jeyaraj, Evaluation on La2O3 garlanded ceria heterostructured binary metal oxide nanoplates for UV/visible light induced removal of organic dye from urban wastewater. South Afr J Chem Eng 26, 49–60 (2018). https://doi.org/10.1016/j.sajce.2018.09.003

    Article  Google Scholar 

  13. C.M. Magdalane, K. Kaviyarasu, G.M.A. Priyadharsini, A.K.H. Bashir, N. Mayedwa, N. Matinise, A.B. Isaev, N. Abdullah Al-Dhabi, M.V. Arasu, S. Arokiyaraj, J. Kennedy, M. Maaza, Improved photocatalytic decomposition of aqueous Rhodamine-B by solar light illuminated hierarchical yttria nanosphere decorated ceria nanorods. J Mater Res Technol 8, 2898–2909 (2019)

    Article  Google Scholar 

  14. B. Mu, J. Tang, L. Zhang, A. Wang, Preparation, characterization and application on dye adsorption of a well-defined two-dimensional superparamagnetic clay/polyaniline/Fe3O4 nanocomposite. Appl Clay Sci 132–133, 7–16 (2016). https://doi.org/10.1016/j.clay.2016.06.005

    Article  Google Scholar 

  15. L. Xu, L. Feng, X. Li, Q. An, Stable polymer/inorganic composite multilayers using covalent cross-linking assisted by a magnetic field. J Mater Sci 54, 11848–11857 (2019). https://doi.org/10.1007/s10853-019-03767-3

    Article  ADS  Google Scholar 

  16. B. Zhang, T. Zhang, Z. Zhang, M. Xie, Hydrothermal synthesis of a graphene/magnetite/montmorillonite nanocomposite and its ultrasonically assisted methylene blue adsorption. J Mater Sci 54, 11037–11055 (2019). https://doi.org/10.1007/s10853-019-03659-6

    Article  ADS  Google Scholar 

  17. S. Hashemian, H. Saffari, S. Ragabion, Adsorption of Cobalt(II) from aqueous solutions by Fe3O4/Bentonite nanocomposite. Water Air Soil Pollut 226, 2212 (2014). https://doi.org/10.1007/s11270-014-2212-6

    Article  ADS  Google Scholar 

  18. K. Kalantari, M.B. Ahmad, H.R. Fard Masoumi, K. Shameli, M. Basri, R. Khandanlou, Rapid and high capacity adsorption of heavy metals by Fe3O4/montmorillonite nanocomposite using response surface methodology: Preparation, characterization, optimization, equilibrium isotherms, and adsorption kinetics study. J Taiwan Inst Chem Eng 49, 192–198 (2015)

    Article  Google Scholar 

  19. L. Chen, C.H. Zhou, S. Fiore, D.S. Tong, H. Zhang, C.S. Li, S.F. Ji, W.H. Yu, Functional magnetic nanoparticle/clay mineral nanocomposites: preparation, magnetism and versatile applications. Appl Clay Sci 127, 143–163 (2016). https://doi.org/10.1016/j.clay.2016.04.009

    Article  Google Scholar 

  20. L. Ai, Y. Zhou, J. Jiang, Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance. Desalination 266, 72–77 (2011)

    Article  Google Scholar 

  21. L. Cottet, C.A.P. Almeida, N. Naidek, M.F. Viante, M.C. Lopes, N.A. Debacher, Adsorption characteristics of montmorillonite clay modified with iron oxide with respect to methylene blue in aqueous media. Appl Clay Sci. 95, 25–31 (2014). https://doi.org/10.1016/j.clay.2014.03.023

    Article  Google Scholar 

  22. M. Fayazi, D. Afzali, M.A. Taher, A. Mostafavi, V.K. Gupta, Removal of Safranin dye from aqueous solution using magnetic mesoporous clay: optimization study. J Mol Liq 212, 675–685 (2015). https://doi.org/10.1016/j.molliq.2015.09.045

    Article  Google Scholar 

  23. J. Chang, J. Ma, Q. Ma, D. Zhang, N. Qiao, M. Hu, H. Ma, Adsorption of methylene blue onto Fe3O4/activated montmorillonite nanocomposite. Appl. Clay Sci. 119, 132–140 (2016). https://doi.org/10.1016/j.clay.2015.06.038

    Article  Google Scholar 

  24. A. Bée, L. Obeid, R. Mbolantenaina, M. Welschbillig, D. Talbot, Magnetic chitosan/clay beads: a magsorbent for the removal of cationic dye from water. J Magn Magn Mater 421, 59–64 (2017). https://doi.org/10.1016/j.jmmm.2016.07.022

    Article  ADS  Google Scholar 

  25. T. Szabó, A. Bakandritsos, V. Tzitzios, S. Papp, L. Korösi, G. Galbács, K. Musabekov, D. Bolatova, D. Petridis, I. Dékány, Magnetic iron oxide/clay composites: effect of the layer silicate support on the microstructure and phase formation of magnetic nanoparticles. Nanotechnology 18, 285602 (2007). https://doi.org/10.1088/0957-4484/18/28/285602

    Article  Google Scholar 

  26. D. Wu, C. Zhu, Y. Chen, B. Zhu, Y. Yang, Q. Wang, W. Ye, Preparation, characterization and adsorptive study of rare earth ions using magnetic GMZ bentonite. Appl Clay Sci 62–63, 87–93 (2012). https://doi.org/10.1016/j.clay.2012.04.015

    Article  Google Scholar 

  27. F. Barraqué, M.L. Montes, M.A. Fernández, R.C. Mercader, R.J. Candal, Torres Sánchez, Synthesis and characterization of magnetic-montmorillonite and magnetic-organo-montmorillonite: surface sites involved on cobalt sorption. J Magn Magn Mater 466, 376–384 (2018)

    Article  ADS  Google Scholar 

  28. A.P. Magnoli, L. Tallone, C.A.R. Rosa, A.M. Dalcero, S.M. Chiacchiera, R.M. Torres Sanchez, Commercial bentonites as detoxifier of broiler feed contaminated with aflatoxin. Appl Clay Sci 40, 63–71 (2008). https://doi.org/10.1016/j.clay.2007.07.007

    Article  Google Scholar 

  29. A. Czímerová, J. Bujdák, R. Dohrmann, Traditional and novel methods for estimating the layer charge of smectites. Appl Clay Sci 34, 2–13 (2006). https://doi.org/10.1016/j.clay.2006.02.008

    Article  Google Scholar 

  30. J.R. Kim, E. Kan, Heterogeneous photo-Fenton oxidation of methylene blue using CdS-carbon nanotube/TiO2 under visible light. J Ind Eng Chem 21, 644–652 (2015). https://doi.org/10.1016/j.jiec.2014.03.032

    Article  Google Scholar 

  31. N. Dossi, R. Toniolo, S. Susmel, A. Pizzariello, G. Bontempelli, Simultaneous RP-LC determination of additives in soft drinks. Chromatographia 63, 557–562 (2006). https://doi.org/10.1365/s10337-006-0793-y

    Article  Google Scholar 

  32. H. Bartonkova, M. Mashlan, I. Medrik, D. Jancik, R. Zboril, Magnetically modified bentonite as a possible contrast agent in MRI of gastrointestinal tract. Chem Pap 61, 413–416 (2007)

    Article  Google Scholar 

  33. A.M. Fernández Solarte, J. Villarroel-Rocha, C.F. Morantes, M.L. Montes, K. Sapag, G. Curutchet, R.M. Torres Sánchez, Insight into surface and structural changes of montmorillonite and organomontmorillonites loaded with Ag. Comptes Rendus Chim (2018). https://doi.org/10.1016/j.crci.2018.09.006

    Article  Google Scholar 

  34. W. Xie, Z. Gao, W.-P. Pan, D. Hunter, A. Singh, R. Vaia, Thermal degradation chemistry of alkyl quaternary ammonium montmorillonite. Chem Mater 13, 2979–2990 (2001). https://doi.org/10.1021/cm010305s

    Article  Google Scholar 

  35. A. Pacuła, E. Bielańska, A. Gaweł, K. Bahranowski, E.M. Serwicka, Textural effects in powdered montmorillonite induced by freeze-drying and ultrasound pretreatment. Appl Clay Sci 32, 64–72 (2006). https://doi.org/10.1016/j.clay.2005.10.002

    Article  Google Scholar 

  36. ImageJ - Image Processing and Analysis in Java, 1997. https://imagej.nih.gov/ij/ (Accessed February 14, 2019).

  37. K. Lagarec, D.G. Rancourt, Mössbauer spectral analysis software for windows (version 10). Dep Phys Univ Ott Can 9, 6 (1998)

    Google Scholar 

  38. M.L. Montes, P.C. Rivas, M.A. Taylor, R.C. Mercader, Approximate total Fe content determined by Mössbauer spectrometry: application to determine the correlation between gamma-ray-emitter activities and total content of Fe phases in soils of the Province of Buenos Aires, Argentina. J. Environ Radioact 162–163, 113–117 (2016). https://doi.org/10.1016/j.jenvrad.2016.05.016

    Article  Google Scholar 

  39. H. He, R.L. Frost, T. Bostrom, P. Yuan, L. Duong, D. Yang, Y. Xi, J.T. Kloprogge, Changes in the morphology of organoclays with HDTMA+ surfactant loading. Appl Clay Sci 31, 262–271 (2006). https://doi.org/10.1016/j.clay.2005.10.011

    Article  Google Scholar 

  40. L.C.A. Oliveira, R.V.R.A. Rios, J.D. Fabris, K. Sapag, V.K. Garg, R.M. Lago, Clay–iron oxide magnetic composites for the adsorption of contaminants in water. Appl Clay Sci 22, 169–177 (2003). https://doi.org/10.1016/S0169-1317(02)00156-4

    Article  Google Scholar 

  41. A.L. Ingram, T.M. Nickels, D.K. Maraoulaite, R.L. White, Thermogravimetry–mass spectrometry investigations of montmorillonite interlayer water perturbations caused by aromatic acid adsorbates. J Therm Anal Calorim 126, 1157–1166 (2016). https://doi.org/10.1007/s10973-016-5661-x

    Article  Google Scholar 

  42. K. Przepiera, A. Przepiera, Kinetics of Thermal Transformations of Precipitated Magnetite and Goethite. J Therm Anal Calorim 65, 497–503 (2001). https://doi.org/10.1023/A:1012441421955

    Article  Google Scholar 

  43. H. He, Z. Ding, J. Zhu, P. Yuan, Y. Xi, D. Yang, R.L. Frost, Thermal characterization of surfactant-modified montmorillonites. Clays Clay Miner 53, 287–293 (2005). https://doi.org/10.1346/CCMN.2005.0530308

    Article  ADS  Google Scholar 

  44. B. Caglar, C. Topcu, F. Coldur, G. Sarp, S. Caglar, A. Tabak, E. Sahin, Structural, thermal, morphological and surface charge properties of dodecyltrimethylammonium-smectite composites. J Mol Struct 1105, 70–79 (2016). https://doi.org/10.1016/j.molstruc.2015.10.017

    Article  ADS  Google Scholar 

  45. K. Cendrowski, P. Sikora, B. Zielinska, E. Horszczaruk, E. Mijowska, Chemical and thermal stability of core-shelled magnetite nanoparticles and solid silica. Appl Surf Sci 407, 391–397 (2017). https://doi.org/10.1016/j.apsusc.2017.02.118

    Article  ADS  Google Scholar 

  46. A.E. Bianchi, M. Fernández, M. Pantanetti, R. Viña, I. Torriani, R.M.T. Sánchez, G. Punte, ODTMA+ and HDTMA+ organo-montmorillonites characterization: new insight by WAXS, SAXS and surface charge. Appl Clay Sci 83–84, 280–285 (2013). https://doi.org/10.1016/j.clay.2013.08.032

    Article  Google Scholar 

  47. P. Praus, M. Turicová, S. Študentová, M. Ritz, Study of cetyltrimethylammonium and cetylpyridinium adsorption on montmorillonite. J Colloid Interface Sci 304, 29–36 (2006). https://doi.org/10.1016/j.jcis.2006.08.038

    Article  ADS  Google Scholar 

  48. D. Zadaka, A. Radian, Y.G. Mishael, Applying zeta potential measurements to characterize the adsorption on montmorillonite of organic cations as monomers, micelles, or polymers. J Colloid Interface Sci 352, 171–177 (2010). https://doi.org/10.1016/j.jcis.2010.08.010

    Article  ADS  Google Scholar 

  49. J. Mürbe, A. Rechtenbach, J. Töpfer, Synthesis and physical characterization of magnetite nanoparticles for biomedical applications. Mater Chem Phys 110, 426–433 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.037

    Article  Google Scholar 

  50. D.J. Dunlop, Superparamagnetic and single-domain threshold sizes in magnetite. J Geophys Res 78, 1780–1793 (1973). https://doi.org/10.1029/JB078i011p01780

    Article  ADS  Google Scholar 

  51. S.A. Jadhav, S.V. Patil, Facile synthesis of magnetic iron oxide nanoparticles and their characterization. Front Mater Sci 8, 193–198 (2014). https://doi.org/10.1007/s11706-014-0249-5

    Article  Google Scholar 

  52. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst, R.N. Muller, Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108, 2064–2110 (2008). https://doi.org/10.1021/cr068445e

    Article  Google Scholar 

  53. T.S. Anirudhan, M. Ramachandran, Adsorptive removal of basic dyes from aqueous solutions by surfactant modified bentonite clay (organoclay): Kinetic and competitive adsorption isotherm. Process Saf Environ Prot 95, 215–225 (2015). https://doi.org/10.1016/j.psep.2015.03.003

    Article  Google Scholar 

  54. L. Zhu, B. Chen, Sorption Behavior of p -Nitrophenol on the Interface between anion−cation organobentonite and water. Environ Sci Technol 34, 2997–3002 (2000). https://doi.org/10.1021/es991460z

    Article  ADS  Google Scholar 

  55. L. Zhu, Y. Su, Benzene vapor sorption by organobentonites from ambient air. Clays Clay Miner 50, 421–427 (2002). https://doi.org/10.1346/000986002320514145

    Article  ADS  Google Scholar 

  56. C.A.P. Almeida, N.A. Debacher, A.J. Downs, L. Cottet, C.A.D. Mello, Removal of methylene blue from colored effluents by adsorption on montmorillonite clay. J Colloid Interface Sci 332, 46–53 (2009)

    Article  ADS  Google Scholar 

  57. B.A. Fil, C. Ozmetin, M. Korkmaz, Cationic Dye (Methylene Blue) Removal from Aqueous Solution by Montmorillonite. Bull Korean Chem Soc 33, 3184–3190 (2012). https://doi.org/10.5012/bkcs.2012.33.10.3184

    Article  Google Scholar 

  58. M. Jourvand, G. Shams Khorramabadi, Y. Omidi Khaniabadi, H. Godini, H. Nourmoradi, Removal of methylene blue from aqueous solutions using modified clay. J Basic Res Med Sci 2, 32–41 (2015)

    Google Scholar 

Download references

Funding

Financial support from the Argentine Ministry of Science and technology, ANPCyT- PICT 585/2014, 2386/2014, and PICT-2018-01536 acknowledged. M.L.M., M.A.F., R.M.T.S., and R.C.M. are members of the National Council for Scientific and Technological Research (CONICET). F. Barraqué acknowledges a CONICET fellowship. Financial support of UNLP School of Exact Sciences (Estudios de Materiales de Interes en aplicaciones tecnológicas y ambientales: generación de energías limpias y remediación—captura de contaminates) and CONICET (PUE 066) are gratefully acknowledged by M. L. Montes and R.C. Mercader.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Facundo Barraqué.

Ethics declarations

Conflicts of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 219 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barraqué, F., Montes, M.L., Fernández, M.A. et al. Synthesis of high-saturation magnetization composites by montmorillonite loading with hexadecyl trimethyl ammonium ions and magnetite nucleation for improved effluent sludge handling and dye removal. Appl. Phys. A 126, 736 (2020). https://doi.org/10.1007/s00339-020-03834-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03834-6

Keywords

Navigation