Skip to main content
Log in

Frequency- and temperature-dependent dielectric features of multi-component electronic material: (Pb0.8Dy0.1Bi0.1)(Fe0.2Ti0.8)O3

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A multiple cation containing sample as [(Pb0.8Dy0.1Bi0.1)(Fe0.2Ti0.8)O3] is fabricated by adopting the solid-state reaction process. The crystallographic structure, crystallite size, morphology, dielectric behavior, conductivity, polarization, impedance as well as electric modulus spectroscopy are experimentally observed for this fabricated composition. The crystal structure of the specimen is observed to be tetragonal from X-ray diffraction. The micrograph shows the presence of polycrystalline microstructure with uniform distributed grains. The impedance spectroscopy analysis as a function of temperature (100–450 °C) and frequency (1–1000 kHz) helps to signify the resistive and capacitive behavior of the compound. The nature of the prepared specimen and conduction mechanism is illustrated through AC conductivity study. The modulus analysis elucidates the existence of non-Debye dielectric relaxation nature in the synthesized compound. The compound possesses appreciable value of loss tangent and remnant polarization, i.e., 0.02 and 0.014 µC/cm2, with high value of dielectric constant at room temperature. The dysprosium doping entails stability with interesting electrical and dielectric properties. The preliminary capacitive characteristic has been elucidated, thus making it a stronger contender for functional device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. Qing-Xin, P. Kirby, E. Komuro, M. Imura, Q. Zhang, R. Whatmore, IEEE Trans. Microw. Theory Tech. 49, 769 (2001)

    Article  ADS  Google Scholar 

  2. P. Muralt, M. Kohli, T. Maeder, A. Kholkin, K. Brooks, Sens. Actuators A 48, 87 (1995)

    Article  Google Scholar 

  3. H. Chen, M. Jing, Y. Pei, D. Fang, Int. J. Fract. 179, 35 (2013)

    Article  Google Scholar 

  4. S. Dutta, A. Pandey, I. Yadav, O.P. Thakur, R. Laishram, R. Pal, R. Chatterjee, J. Appl. Phys. 112, 084101 (2012)

    Article  ADS  Google Scholar 

  5. Z.G. Lu, G. Calvarin, Phys. Rev. B. 51, 2694 (1995)

    Article  ADS  Google Scholar 

  6. L.E. Cross, Ferro 76, 241 (1987)

    Article  Google Scholar 

  7. N. Settler, L.E. Cross, J. App. Phys. 51, 4356 (1980)

    Article  ADS  Google Scholar 

  8. C. Soykan, H. Gocmez, Results Phys. 13, 102278 (2019)

    Article  Google Scholar 

  9. X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, J. Am. Ceram. Soc. 98, 804 (2015)

    Article  Google Scholar 

  10. C. Zhou, X. Liu, J. Mater. Sci. 43, 1016 (2008)

    Article  ADS  Google Scholar 

  11. J. Wang, J.B. Neaton, H. Zheng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuttig, R. Ramesh, Science 299, 1719 (2003)

    Article  ADS  Google Scholar 

  12. N.A. Spaldin, M. Fiebig, Science 309, 391 (2005)

    Article  Google Scholar 

  13. S.J. Clark, J. Robertson, Appl. Phys. Lett. 90, 132903 (2007)

    Article  ADS  Google Scholar 

  14. J. Wei, R. Haumont, R. Jarrier, P. Berhtet, B. Dkhil, Appl. Phys. Lett. 96, 102509 (2010)

    Article  ADS  Google Scholar 

  15. Y.J. Wu, X.K. Chen, J. Zhang, X.J. Chen, J. Appl. Phys. 111, 053927 (2012)

    Article  ADS  Google Scholar 

  16. V.R. Palkar, J. John, R. Pinto, Appl. Phys. Lett. 80, 1628 (2002)

    Article  ADS  Google Scholar 

  17. S. Gupta, S. Bhattacharjee, D. Pandey, V. Bansal, S.K. Bhargava, J.L. Peng, A. Garg, Appl. Phys. A 104, 395 (2011)

    Article  ADS  Google Scholar 

  18. F. Huang, X. Lu, Z. Wang, W. Lin, Y. Kan, H.B. Cai, J. Zhu, Appl. Phys. A 97, 699 (2009)

    Article  ADS  Google Scholar 

  19. S.H. Baek, H.W. Jang, C.M. Folkman, Y.L. Li, B. Winchester, J.X. Zhang, Q. He, Y.H. Chu, C.T. Nelson, M.S. Rzchowski, X.Q. Pan, R. Ramesh, L.Q. Chen, C.B. Eom, Nat. Mater. 9, 309 (2010)

    Article  ADS  Google Scholar 

  20. J.G. Chen, Z. Xu, X. Yao, Mater. Res. Innov. 14, 234 (2013)

    Article  Google Scholar 

  21. J. Cheng, S.W. Yu, J. Chen, Z. Meng, L.E. Cross, Appl. Phys. Lett. 89, 122911 (2006)

    Article  ADS  Google Scholar 

  22. E.E. Wu, J. Appl. Cryst. 22, 506 (1989)

    Article  Google Scholar 

  23. L. Thorsten, T. Granzow, J. Wook, J. Rödel, J. Appl. Phys. 108, 014103 (2010)

    Article  ADS  Google Scholar 

  24. A. Reetu, S. Agarwal, N. Sanghi, Ahlawat, Monica. J. Appl. Phys. 111, 113917 (2012)

    Article  ADS  Google Scholar 

  25. K.K. Mishra, A.T. Satya, A. Bharathi, V. Sivasubramanian, V.R.K. Murthy, A.K. Arora, J. Appl. Phys. 10, 123529 (2011)

    Article  ADS  Google Scholar 

  26. J.E. Garcia, V. Gomis, R. Perez, A. Albareda, J.A. Eiran, Appl. Phys. Lett. 91, 0429021 (2007)

    Google Scholar 

  27. Z. Dai, Y. Akishige, J. Phys. D Appl. Phys. 43, 445403 (2010)

    Article  ADS  Google Scholar 

  28. S.K. Pradhan, S.N. Das, S. Bhuyan, C. Behera, R. Padhee, R.N.P. Choudhary, Appl. Phys. A 122, 604 (2016)

    Article  ADS  Google Scholar 

  29. S. Sharma, V. Singh, O. Parkash, R.K. Dwivedi, Appl. Phys. A 112, 975 (2013)

    Article  ADS  Google Scholar 

  30. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Res. Bull. 43401 (2008)

  31. K. Parida, S.K. Dehury, R.N.P. Choudhary, Phys. Lett. A 380, 4083 (2016)

    Article  ADS  Google Scholar 

  32. P. Gupta, R. Padhee, P.K. Mahapatra, R.N.P. Choudhary, Mater. Electron. https://doi.org/10.1007/s10854 (2017)

  33. J.R. Macdonald, Chapter 4 (Wiley, New York, 1987)

    Google Scholar 

  34. S. Chatterjee, P.K. Mahapatra, R.N.P. Choudhary, A.K. Thakur, Phys. Status Solidi (a) 201, 588 (2004)

    Article  ADS  Google Scholar 

  35. X. Chai, X. Sun, L. Pang, Bismuth Nickel Niobate with Small Negative Temperature Coefficients of Dielectric Constant, IEEE, pp. 1–3 (2017)

  36. N. Setter, R. Waser, Electroceram. Mater. Acta Mater. 48, 151–178 (2000)

    Article  Google Scholar 

  37. N.K. Mohanty, A.K. Behera, S.K. Satpathy, B. Behera, P. Nayak, Solid State Physics. AIP Conference Proceedings 15, p. 1330 (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyanarayan Bhuyan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, S.K., Halder, S., Mallick, M.K. et al. Frequency- and temperature-dependent dielectric features of multi-component electronic material: (Pb0.8Dy0.1Bi0.1)(Fe0.2Ti0.8)O3. Appl. Phys. A 126, 377 (2020). https://doi.org/10.1007/s00339-020-03542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03542-1

Keywords

Navigation