Skip to main content
Log in

Solution-processed sphere-like Cu2ZnSnS4 nanoparticles for solar cells: effect of oleylamine concentration on properties

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Quaternary Cu2ZnSnS4 (CZTS) nanoparticles of high quality have been synthesized utilizing rotary evaporation technique. The volume of the solvent, oleylamine (OLM), was found to affect the morphological, structural and electrical characteristics of the synthesized structures. The materials were characterized using various analytical techniques. XRD patterns and Raman measurements reveal that CZTS nanoparticles exist in a crystalline state with a kesterite structure. For OLM of 6 mL, transmission electron microscopy reveals the formation of spherical CZTS nanoparticles. Scanning electron microscopy analysis of the nanocrystal thin films clearly shows a crack-free, uniform-grain thin film with a particle size in the range between 1 and 2 µm. Ultraviolet–visible–near infrared (UV–Vis–NIR) spectra showed a direct band gap of 1.47 eV, which is close to the optimum value required for photovoltaic applications. The current synthetic strategy is rapid and simple, and it can be utilized for commercial application. Solar cells were built using the structure glass/Mo/CZTS/CdS/i-ZnO/AZO/Ag and were found to exhibit a conversion efficiency of about 2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. T.K. Todorov, K.B. Reuter, D.B. Mitzi, High efficiency solar cell with earth abundant liquid processed absorber. Adv. Mater. 22, E156–E159 (2010)

    Article  Google Scholar 

  2. M. Valentini, C. Malerba, F. Menchini, D. Tedeschi, A. Polimeni, M. Capizzi, A. Mittiga, Effect of the order-disorder transition on the optical properties of Cu2ZnSnS4. Appl. Phys. Lett. 108, 211909 (2016)

    Article  ADS  Google Scholar 

  3. A. Inamdar, S. Lee, K.-Y. Jeon, C.H. Lee, S. Pawar, R. Kalubarme, C.J. Park, H. Im, W. Jung, H. Kim, Optimized fabrication of sputter deposited Cu2ZnSnS4 (CZTS) thin films. Sol. Energy 91, 196–203 (2013)

    Article  ADS  Google Scholar 

  4. B. Shin, O. Gunawan, Y. Zhu, N.A. Bojarczuk, S.J. Chey, S. Guha, Thin film solar cell with 8.4% power conversion efficiency using an earth-abundant Cu2ZnSnS4 absorber. Prog. Photovolt. Res. Appl. 21, 72–76 (2013)

    Article  Google Scholar 

  5. M. Ravindiran, C. Praveenkumar, Status review and the future prospects of CZTS based solar cell–a novel approach on the device structure and material modeling for CZTS based photovoltaic device. Renew. Sustain. Energy Rev. 94, 317–329 (2018)

    Article  Google Scholar 

  6. C. Yan, J. Huang, K. Sun, S. Johnston, Y. Zhang, H. Sun, A. Pu, M. He, F. Liu, K. Eder, Cu2ZnSnS4 solar cells with over 10% power conversion efficiency enabled by heterojunction heat treatment. Nat. Energy 3, 764 (2018)

    Article  ADS  Google Scholar 

  7. S.H. Hadke, S. Levcenko, S. Lie, C.J. Hages, J.A. Márquez, T. Unold, L.H. Wong, Synergistic effects of double cation substitution in solution-processed CZTS solar cells with over 10% efficiency. Adv. Energy Mater. 8, 1802540 (2018)

    Article  Google Scholar 

  8. C. Zhang, J. Tao, J. Chu, An 8.7% efficiency co-electrodeposited Cu2ZnSnS4 photovoltaic device fabricated via a pressurized post-sulfurization process. J. Mater. Chem. C 6, 13275–13282 (2018)

    Article  Google Scholar 

  9. N. Bao, X. Qiu, Y.-H.A. Wang, Z. Zhou, X. Lu, C.A. Grimes, A. Gupta, Facile thermolysis synthesis of CuInS2 nanocrystals with tunable anisotropic shape and structure. Chem. Commun. 47, 9441–9443 (2011)

    Article  Google Scholar 

  10. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, K.A.M. Saron, M.A. Farrukh, A.S. Mohamed, N.K. Allam, Aqueous synthesis of visible-light photoactive cuboid Cu2ZnSnS4 nanocrystals using rotary evaporation. Mater. Lett. 125, 195–197 (2014)

    Article  Google Scholar 

  11. E.M. Mkawi, K. Ibrahim, M.K.M. Ali, M.A. Farrukh, N.K. Allam, Solvent solution-dependent properties of nonstoichiometric cubic Cu2ZnSnS4 nanoparticles. Chem. Phys. Lett. 608, 393–397 (2014)

    Article  ADS  Google Scholar 

  12. E. Mkawi, K. Ibrahim, M. Ali, M. Farrukh, A. Mohamed, Dependence of the properties of copper zinc tin sulfide thin films prepared by electrochemical deposition on sulfurization temperature. J. Mater. Sci. Mater. Electr. 25, 857–863 (2014)

    Article  Google Scholar 

  13. S.S. Mali, B.M. Patil, C.A. Betty, P.N. Bhosale, Y.W. Oh, S.R. Jadkar, R.S. Devan, Y.-R. Ma, P.S. Patil, Novel synthesis of kesterite Cu2ZnSnS4 nanoflakes by successive ionic layer adsorption and reaction technique: characterization and application. Electrochim. Acta 66, 216–221 (2012)

    Article  Google Scholar 

  14. K.-C. Hsu, J.-D. Liao, J.-R. Yang, Y.-S. Fu, Cellulose acetate assisted synthesis and characterization of kesterite quaternary semiconductor Cu2ZnSnS4 mesoporous fibers by an electrospinning process. CrystEngComm 15, 4303–4308 (2013)

    Article  Google Scholar 

  15. Y. Wang, H. Gong, Low temperature synthesized quaternary chalcogenide Cu2ZnSnS4 from nano-crystallite binary sulfides. J. Electrochem. Soc. 158, H800–H803 (2011)

    Article  Google Scholar 

  16. P. Fernandes, P. Salomé, A. Da Cunha, Growth and Raman scattering characterization of Cu2ZnSnS4 thin films. Thin Solid Films 517, 2519–2523 (2009)

    Article  ADS  Google Scholar 

  17. M. Jiang, X. Yan, Cu 2ZnSnS 4 Thin Film Solar Cells: Present Status and Future Prospects (INTECH Open Access Publisher, London, 2013)

    Google Scholar 

  18. K. Mokurala, P. Bhargava, S. Mallick, Single step synthesis of chalcogenide nanoparticles Cu2ZnSnS4, Cu2FeSnS4 by thermal decomposition of metal precursors. Mater. Chem. Phys. 147, 371–374 (2014)

    Article  Google Scholar 

  19. A. Khare, B. Himmetoglu, M. Johnson, D.J. Norris, M. Cococcioni, E.S. Aydil, Calculation of the lattice dynamics and Raman spectra of copper zinc tin chalcogenides and comparison to experiments. J. Appl. Phys. 111, 083707 (2012)

    Article  ADS  Google Scholar 

  20. S.W. Shin, S. Pawar, C.Y. Park, J.H. Yun, J.-H. Moon, J.H. Kim, J.Y. Lee, Studies on Cu2ZnSnS4 (CZTS) absorber layer using different stacking orders in precursor thin films. Sol. Energy Mater. Sol. Cells 95, 3202–3206 (2011)

    Article  Google Scholar 

  21. S.W. Shin, J.H. Han, C.Y. Park, S.-R. Kim, Y.C. Park, G. Agawane, A. Moholkar, J.H. Yun, C.H. Jeong, J.Y. Lee, A facile and low cost synthesis of earth abundant element Cu2ZnSnS4 (CZTS) nanocrystals: effect of Cu concentrations. J. Alloys Compd. 541, 192–197 (2012)

    Article  Google Scholar 

  22. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency. Adv. Energy Mater. 4, 1301465 (2014)

    Article  Google Scholar 

  23. A. Redinger, S. Siebentritt, Coevaporation of Cu2ZnSnSe4 thin films. Appl. Phys. Lett. 97, 092111 (2010)

    Article  ADS  Google Scholar 

  24. S. Chen, X. Gong, A. Walsh, S.-H. Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4. Appl. Phys. Lett. 96, 021902 (2010)

    Article  ADS  Google Scholar 

  25. M. Kumar, A. Dubey, N. Adhikari, S. Venkatesan, Q. Qiao, Strategic review of secondary phases, defects and defect-complexes in kesterite CZTS–Se solar cells. Energy Environ. Sci. 8, 3134–3159 (2015)

    Article  Google Scholar 

  26. S. Bourdais, C. Choné, B. Delatouche, A. Jacob, G. Larramona, C. Moisan, A. Lafond, F. Donatini, G. Rey, S. Siebentritt, Is the Cu/Zn disorder the main culprit for the voltage deficit in kesterite solar cells? Adv. Energy Mater. 6, 1502276 (2016)

    Article  Google Scholar 

  27. S. Siebentritt, S. Schorr, Kesterites—a challenging material for solar cells. Prog. Photovolt. Res. Appl. 20, 512–519 (2012)

    Article  Google Scholar 

  28. X. Liu, J. Huang, F. Zhou, F. Liu, K. Sun, C. Yan, J.A. Stride, X. Hao, Understanding the key factors of enhancing phase and compositional controllability for 6% efficient pure-sulfide Cu2ZnSnS4 solar cells prepared from quaternary wurtzite nanocrystals. Chem. Mater. 28, 3649–3658 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Deanship of Scientific Research (DSR) at King Abdulaziz University, Jeddah, under Grant No. D1439-52-130. The authors, therefore, acknowledge with thanks DSR for technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Mkawi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mkawi, E.M., Al-Hadeethi, Y., Shalaan, E. et al. Solution-processed sphere-like Cu2ZnSnS4 nanoparticles for solar cells: effect of oleylamine concentration on properties. Appl. Phys. A 126, 50 (2020). https://doi.org/10.1007/s00339-019-3233-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3233-1

Keywords

Navigation