Skip to main content
Log in

Dependence of the properties of copper zinc tin sulfide thin films prepared by electrochemical deposition on sulfurization temperature

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Copper zinc tin sulfide (CZTS, Cu2ZnSnS4) is a low band gap semiconductor that is attractive for use in solar cells. We investigated the dependence of the structure and properties of CZTS thin films on the temperature used to sulfurize precursor thin films composed of copper, zinc and tin fabricated by electrochemical deposition. The precursor films were sulfurized in a furnace with three zones, which allowed fine control of the sulfurization temperature between 250 and 400 °C. X-ray diffraction and Raman spectroscopic measurements confirmed that the films were composed of CZTS following sulfurization. The grain size and crystallinity of the films increased with sulfurization temperature. The composition of CZTS also varied with sulfurization temperature. The proportions of Cu and Zn increased while that of Sn decreased with increasing sulfurization temperature. Absorption and reflectance spectra revealed that the absorption coefficients and band gaps of the CZTS films varied with sulfurization temperature between 3–4.1 × 104 cm−1 and 1.4–1.53 eV, respectively. Solar cells containing CZTS sulfurized at 400 °C showed a maximum efficiency of 2.04 %, which was attributed to the higher crystallinity and larger grain size of CTZS compared with thin films sulfurized at lower temperatures. Our results show that control of sulfurization temperature is an important factor in optimizing the performance of CZTS thin films in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S.C. Riha, B.A. Parkinson, A.L. Prieto, J. Am. Chem. Soc. 131, 12054 (2009)

    Article  Google Scholar 

  2. G.S. Babu, Y.B.K. Kumar, P.U. Bhaskar, V.S. Raja, J. Phys. D Appl. Phys. 41, 205305 (2008)

    Article  Google Scholar 

  3. A. Redinger, D. Berg, M. Dale, P.J.S. Siebentritt, J. Am. Chem. Soc. 133, 3320 (2011)

    Article  Google Scholar 

  4. H. Katagiri, N. Sasaguchi, S. Hando, S. Hoshino, J. Ohashi, T. Yokota, Sol. Energy Mater. Sol. Cells 49, 407 (1997)

    Article  Google Scholar 

  5. I. Repins, C. Beall, N. Vora, C. DeHart, D. Kuciauskas, P. Dippo, J. Mann, W.C. Hsu, A. Goodrich, R. Noufi, Sol. Energy Mater. Sol. Cells 101, 154 (2012)

    Article  Google Scholar 

  6. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, Y. Liu, Sol. Energy Mater. Sol. Cells 94, 2431 (2010)

    Article  Google Scholar 

  7. A.V. Moholkar, S.S. Shinde, A.R. Babar, K.U. Sim, H.H. Lee, K.Y. Rajpure, P.S. Patil, C.H. Bhosale, J.H. Kim, J. Alloys Compd. 509, 7439 (2011)

    Article  Google Scholar 

  8. J.J. Scragg, D.M. Berg, P.J. Dale, J. Electroanal. Chem. 646, 52 (2010)

    Article  Google Scholar 

  9. K. Tanaka, Y. Fukui, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 95, 838 (2011)

    Article  Google Scholar 

  10. Y.B.K. Kumar, G.S. Babu, P.U. Bhaskar, V.S. Raja, Sol. Energy Mater Sol. Cells 93, 1230 (2009)

    Article  Google Scholar 

  11. A. Kassim, W. Tan, A.H. Abdullah, S. Nagalingam, H.S. Min, S. Maced, J. Chem. Chem. Eng. 29, 97 (2010)

    Google Scholar 

  12. H. Araki, A. Mikaduki, Y. Kubo, T. Sato, K. Jimbo, W.S. Maw, H. Katagiri, M. Yamazaki, K. Oishi, A. Takeuchi, Thin Solid Films 517, 1457 (2008)

    Article  Google Scholar 

  13. A. Ennaoui, M.L. Steiner, A. Weber, D. Abou-Ras, I. Kotschau, H.W. Schock, R. Schurr, A. Holzing, S. Jost, R. Hock, T. Vob, J. Schulze, A. Kirbs, Thin Solid Films 517, 2511 (2009)

    Article  Google Scholar 

  14. S.M. Pawar, A.V. Moholkar, I.K. Kim, S.W. Shin, J.H. Moon, J.I. Rhee, J.H. Kim, Curr. Appl. Phys. 10, 565 (2010)

    Article  Google Scholar 

  15. P.A. Fernandes, P.M.P. Saloméa, A.F. da Cunhaa, J. Alloys Compd. 509, 7600 (2011)

    Article  Google Scholar 

  16. M. Grossberg, J. Krustok, J. Raudoja, T. Raadik, Appl. Phys. Lett. 101, 102102 (2012)

    Article  Google Scholar 

  17. M. Pal, N.R. Mathews, R.S. Gonzalez, X. Mathew, Thin Solid Films 535, 78 (2013)

    Article  Google Scholar 

  18. W.C. Liu, D. Wu, A.D. Li, H.Q. Ling, Y.F. Tang, N.B. Ming, Appl. Surf. Sci. 191, 181 (2002)

    Article  Google Scholar 

  19. J. Kavalakkatt, X. Lin, K. Kornhuber, P. Kusch, A. Ennaoui, S. Reich, M.C.L. Steiner, Thin Solid Films 535, 380 (2013)

    Article  Google Scholar 

  20. K. Moriya, J. Watabe, K. Tanaka, H. Uchiki, Phys. Status Solidi C 3, 2848 (2006)

    Article  Google Scholar 

  21. T. Todorov, M. Kita, J. Carda, P. Escribano, Thin Solid Films 517, 2541 (2009)

    Article  Google Scholar 

  22. K. Tanaka, N. Moritake, H. Uchiki, Sol. Energy Mater. Sol. Cells 91, 1199 (2007)

    Article  Google Scholar 

  23. K. Vipul, K.K. Patel, S.J. Patel, D.V. Shah, J. Cryst. Growth 362, 174 (2013)

    Article  Google Scholar 

  24. T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, J. Phys. Chem. Solids 66, 1978 (2005)

    Article  Google Scholar 

  25. X. Fontané, V. Izquierdo-Roca, E. Saucedo, S. Schorr, V.O. Yukhymchuk, M.Y. Valakh, A. Pérez-Rodríguez, J.R. Morante, J. Alloys Compd. 539, 190 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Nano-optoelectronics Research Laboratory, School of Physics, Universiti Sains Malaysia under Grant No. 203/PSF-6721001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Mkawi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mkawi, E.M., Ibrahim, K., Ali, M.K.M. et al. Dependence of the properties of copper zinc tin sulfide thin films prepared by electrochemical deposition on sulfurization temperature. J Mater Sci: Mater Electron 25, 857–863 (2014). https://doi.org/10.1007/s10854-013-1657-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-013-1657-5

Keywords

Navigation