Skip to main content
Log in

Synthesis of Novel [CdO(75%)/VO2(20%)/SiC(4%):p-Si] Heterojunction Composite Thin Films Decorated with Chlorophyll using Solvothermal-Laser Dual Technique for Solar Cell Applications

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The solvothermal technique is utilized to deposit the nanoparticles into nano-thin films. Where Vanadium dioxide (20%) was mixed with (4%) of SiC, then added to CdO with (75%) to fabricated nanocomposites. PLD technique used Nd: YAG laser with a different energy to deposit nano-thin films on p-Si substrate to get \([{{\text{CdO}}}_{\left(75\mathrm{\%}\right)}/{{\text{VO}}}_{\left(20\mathrm{\%}\right)}/{{\text{SiC}}}_{\left(4\mathrm{\%}\right)}:{\text{p}}-{\text{Si}}]\). Scanning electron microscope (SEM) revealed the expected behavior of grain formation, with granules evenly dispersed across the film surfaces of CdO, VO2, and SiC at particular places. In the presence of increased laser energy, the particle size decreases from 61 to 52 nm recognized. Elemental abundances of Cd, V, Si, C, O, and Mg were determined by energy dispersive X-ray analysis (EDX) to be relatively high. XRD revealed a polycrystalline structure with discriminatory orientations in planes (100) and (101); the peaks of SiC at (111) and (220) appeared at angles (2θ = 34.1°, and 60°), respectively. The diffraction angle (2θ = 34.1°) was observed for Mg at level (111). By increasing laser pulsing, the optical absorption of the prepared composite increases from 310 nm of S1 to 330 nm of S2 and displays blue, and the band gap energies are reduced from 2.7 eV of S1 to 2.5 eV of S2. According to the current–voltage heterojunction characteristics, the forward bias current changes rapidly with applied voltage in the dark, consistent with the tunneling-recombination model. The I-V characteristics curve presented the efficiency of synthesizing nanocomposite thin film in a solar cell is η = 11 with FF = 0.48 under illumination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Semaltianos NG (2010) Nanoparticles by laser ablation. Crit Rev Solid State Mater Sci 35:105–124. https://doi.org/10.1080/10408431003788233

    Article  CAS  Google Scholar 

  2. Al-Bermany E, Chen B (2023) Effect of the functional groups of polymers on their adsorption behavior on graphene oxide nanosheets. Macromol Chem Phys 224:2300101. https://doi.org/10.1002/macp.202300101

    Article  CAS  Google Scholar 

  3. Al Nafiey A, Addad A, Sieber B et al (2017) Reduced graphene oxide decorated with Co3O4 nanoparticles (rGO-Co3O4) nanocomposite: a reusable catalyst for highly efficient reduction of 4-nitrophenol, and Cr(VI) and dye removal from aqueous solutions. Chem Eng J 322:375–384. https://doi.org/10.1016/j.cej.2017.04.039

    Article  CAS  Google Scholar 

  4. Elazab HA, Moussa S, Gupton BF, El-Shall MS (2014) Microwave-assisted synthesis of Pd nanoparticles supported on Fe3O4, Co3O4, and Ni(OH)2 nanoplates and catalysis application for CO oxidation. J Nanoparticle Res 16:2477. https://doi.org/10.1007/s11051-014-2477-0

    Article  CAS  Google Scholar 

  5. Jamil S, Janjua MRSA, Khan SR (2017) Synthesis of Self-assembled Co3O4 nanoparticles with porous sea urchin-like morphology and their catalytic and electrochemical applications. Aust J Chem 70:908–916. https://doi.org/10.1071/CH16694

    Article  CAS  Google Scholar 

  6. Jamil S, Janjua MRSA, Khan SR (2018) Synthesis and structural investigation of polyhedron Co3O4 nanoparticles: Catalytic application and as fuel additive. Mater Chem Phys 216:82–92. https://doi.org/10.1016/j.matchemphys.2018.05.051

    Article  CAS  Google Scholar 

  7. Li J, Yang Z, Qiu H et al (2013) Microwave-assisted simultaneous reduction and titanate treatment of graphene oxide. J Mater Chem A 1:11451–11456. https://doi.org/10.1039/c3ta12228j

    Article  CAS  Google Scholar 

  8. Obaid AN, Al-Bermany E (2023) Performance of functionalized graphene oxide to improve anti-corrosion of epoxy coating on 2024–T3 aluminium alloy. Mater Chem Phys 305:127849. https://doi.org/10.1016/j.matchemphys.2023.127849

    Article  CAS  Google Scholar 

  9. Nie M, Sun K, Meng DD (2009) Formation of metal nanoparticles by short-distance sputter deposition in a reactive ion etching chamber. J Appl Phys 106:054314. https://doi.org/10.1063/1.3211326

    Article  CAS  Google Scholar 

  10. Shaker SS, Ismail RA, Mohammed BK (2023) Preparation of graphene oxide@ZrO2 core/shell nanoparticles by two-step laser ablation in liquid towards a high-performance silicon-based heterojunction photodetector. Silicon 15:5791–5802. https://doi.org/10.1007/s12633-023-02476-6

    Article  CAS  Google Scholar 

  11. Gubin SP, Koksharov YA, Khomutov GB, Yurkov GY (2005) Magnetic nanoparticles: preparation, structure and properties. Usp Khim 74:539–574. https://doi.org/10.1070/rc2005v074n06abeh000897

    Article  Google Scholar 

  12. Jasim SA, Banimuslem HAJ, Alsultany FH et al (2023) Ammonia and nitrogen dioxide detection using ZnO/CNT nanocomposite synthesized by sol–gel technique. J Sol-Gel Sci Technol 108:734–741. https://doi.org/10.1007/s10971-023-06190-y

    Article  CAS  Google Scholar 

  13. Al-Bermany E, Mekhalif AT, Banimuslem HA et al (2023) Effect of green synthesis bimetallic Ag@SiO2 core–shell nanoparticles on absorption behavior and electrical properties of PVA-PEO nanocomposites for optoelectronic applications. Silicon. https://doi.org/10.1007/s12633-023-02332-7

    Article  PubMed Central  Google Scholar 

  14. Abdulridha AR, Al-Bermany E, Hashim FS, Omran Alkhayatt AH (2020) Synthesis and characterization and pelletization pressure effect on the properties of Bi1.7Pb0.3Sr2W0.2 Ca2Cu3 O10+δ superconductor system. Intermetallics 127:106967. https://doi.org/10.1016/j.intermet.2020.106967

  15. Vadgama VS, Vyas RP, Jogiya BV, Joshi MJ (2017) Synthesis and characterization of CdO nano particles by the sol-gel method. AIP Conf Proc 1837:040016. https://doi.org/10.1063/1.4982100

    Article  Google Scholar 

  16. Thema FT, Beukes P, Gurib-Fakim A, Maaza M (2015) Green synthesis of Monteponite CdO nanoparticles by Agathosma betulina natural extract. J Alloys Compd 646:1043–1048. https://doi.org/10.1016/j.jallcom.2015.05.279

    Article  CAS  Google Scholar 

  17. Milošević S, Stojković I, Kurko S et al (2012) The simple one-step solvothermal synthesis of nanostructurated VO 2(B). Ceram Int 38:2313–2317. https://doi.org/10.1016/j.ceramint.2011.11.001

    Article  CAS  Google Scholar 

  18. Devthade V, Lee S (2020) Synthesis of vanadium dioxide thin films and nanostructures. J Appl Phys 128:231101. https://doi.org/10.1063/5.0027690

    Article  CAS  Google Scholar 

  19. Cheng H, Yang M, Lai Y et al (2018) Transparent highly oriented 3C-SiC bulks by halide laser CVD. J Eur Ceram Soc 38:3057–3063. https://doi.org/10.1016/j.jeurceramsoc.2018.03.015

    Article  CAS  Google Scholar 

  20. Ceballos-Mendivil LG, Cabanillas-López RE, Tánori-Córdova JC et al (2014) Synthesis and characterization of silicon carbide in the application of high temperature solar surface receptors. Energy Procedia 57:533–540. https://doi.org/10.1016/j.egypro.2014.10.207

    Article  CAS  Google Scholar 

  21. Kannan CR, Manivannan S, Stalin B, Kailasanathan C (2022) Metallographic characterization of SiC-Ni-Ti layer reinforced on austenitic stainless steel (AISI 316L) by two-step laser fabrication. Silicon 14:5393–5400. https://doi.org/10.1007/s12633-021-01305-y

    Article  CAS  Google Scholar 

  22. Omar MK, Ahmed NM, Alqanoo AAM et al (2024) Performance evaluation of aluminum nitride-decorated AgNWs-based transparent conductive electrodes deposited on flexible substrates. J Mater Sci Mater Electron 35:436. https://doi.org/10.1007/s10854-024-12211-5

    Article  CAS  Google Scholar 

  23. De Lezaeta M, Lam M, Black S et al (2005) The synthesis of III-V semiconductor insb nanoparticles by solvothermal reduction reactions. Mater Res Soc Symp Proc 848:189–193. https://doi.org/10.1557/proc-848-ff3.34

    Article  Google Scholar 

  24. Duta L, Popescu AC (2021) Current research in pulsed laser deposition. Coatings 11:1–5. https://doi.org/10.3390/coatings11030274

    Article  CAS  Google Scholar 

  25. Zhang J, Zhong A, Huang G et al (2020) Enhanced efficiency with CDCA co-adsorption for dye-sensitized solar cells based on metallosalophen complexes. Sol Energy 209:316–324. https://doi.org/10.1016/j.solener.2020.08.096

    Article  CAS  Google Scholar 

  26. Yakuphanoglu F (2010) Nanocluster n-CdO thin film by sol-gel for solar cell applications. Appl Surf Sci 257:1413–1419. https://doi.org/10.1016/j.apsusc.2010.08.045

    Article  CAS  Google Scholar 

  27. Alawi AI, Al-Bermany E (2023) Newly fabricated ternary PAAm-PVA-PVP blend polymer doped by SiO2: absorption and dielectric characteristics for solar cell applications and antibacterial activity. Silicon. https://doi.org/10.1007/s12633-023-02477-5

    Article  Google Scholar 

  28. Koifman OI, Stuzhin PA, Travkin VV, Pakhomov GL (2021) Chlorophylls in thin-film photovoltaic cells, a critical review. RSC Adv 11:15131–15152. https://doi.org/10.1039/d1ra01508g

    Article  CAS  Google Scholar 

  29. Ashokkumar K, Selvaraj K, Muthukrishnan SD (2013) Cynodon dactylon (L.) Pers.: an updated review of its phytochemistry and pharmacology. J Med Plants Res 7:3477–3483. https://doi.org/10.5897/JMPR2013.5316x

    Article  CAS  Google Scholar 

  30. Prakash S (1975) Advanced chemistry of rare earth, 3rd ed. Chemical Publishing Company

  31. Ramsay W, Ramsay W (1891) A System of Inorganic Chemistry. Nature 44:50–51. https://doi.org/10.1038/044050a0

    Article  Google Scholar 

  32. Neiner D, Chiu HW, Kauzlarich SM (2006) Low-temperature solution route to macroscopic amounts of hydrogen terminated silicon nanoparticles. J Am Chem Soc 128:11016–11017. https://doi.org/10.1021/ja064177q

    Article  CAS  PubMed  Google Scholar 

  33. Lan Y, Minnich AJ, Chen G, Ren Z (2010) Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv Funct Mater 20:357–376. https://doi.org/10.1002/adfm.200901512

    Article  CAS  Google Scholar 

  34. Liang S, Li L (2018) Improved thermoelectric performance of CdO by adding SiC fibers versus by adding SiC nanoparticles inclusions. J Appl Phys 123:114303. https://doi.org/10.1063/1.5012046

    Article  CAS  Google Scholar 

  35. Maestre D, Cremades A, Piqueras J (2005) Growth and luminescence properties of micro- and nanotubes in sintered tin oxide. J Appl Phys 97:044316. https://doi.org/10.1063/1.1851602

    Article  CAS  Google Scholar 

  36. Sindhu S, Anantharaman MR, Thampi BP et al (2002) Evaluation of a.c. conductivity of rubber ferrite composites from dielectric measurements. Bull Mater Sci 25:599–607. https://doi.org/10.1007/BF02707892

    Article  CAS  Google Scholar 

  37. Alivisatos A (2003) Hybrid nanorod-polymer solar cell hybrid nanorod-polymer solar cell final report. Natl Renew Energy Lab 89:9

    Google Scholar 

  38. Du Pasquier A, Chen H, Lu Y (2006) Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays. Appl Phys Lett 89:1–4. https://doi.org/10.1063/1.2420779

    Article  CAS  Google Scholar 

  39. Lanje A, Satish Sharma RP (2014) Functional Nanomaterial Synthesis and Characterization Electrical, Magnetic and Optical. LAP Lambert Academic Publishing, Deutscland, Germany, pp 54–121

  40. Tadeo IJ, Bhardwaj D, Sheela D et al (2020) Highly photoresponsive VO2(M1) thin films synthesized by DC reactive sputtering. J Mater Sci Mater Electron 31:4687–4695. https://doi.org/10.1007/s10854-020-03023-4

    Article  CAS  Google Scholar 

  41. Gangwar J, Gupta BK, Srivastava AK (2016) Prospects of emerging engineered oxide nanomaterials and their applications. Def Sci J 66:323–340. https://doi.org/10.14429/dsj.66.10206

  42. Fiedor L, Sta̧siek M, Myśliwa-Kurdziel B, Strzałka K (2003) Phytol as one of the determinants of chlorophyll interactions in solution. Photosynth Res 78:47–57.https://doi.org/10.1023/A:1026042005536

  43. Ashcroft SP, Stocks B, Egan B, Zierath JR (2024) Exercise induces tissue-specific adaptations to enhance cardiometabolic health. Cell Metab 36:278–300. https://doi.org/10.1016/j.cmet.2023.12.008

    Article  CAS  PubMed  Google Scholar 

  44. Otgonbayar Z, Jun Joo Y, Youn Cho K et al (2022) Novel preparation of functional β-SiC fiber based In2O3 nanocomposite and controlling of influence factors for the chemical gas sensing. Sci Rep 12:1–16. https://doi.org/10.1038/s41598-022-11000-6

    Article  CAS  Google Scholar 

  45. Arefi-Rad MR, Kafashan H (2020) Pb-doped SnS nano-powders: Comprehensive physical characterizations. Opt Mater (Amst) 105:109887. https://doi.org/10.1016/j.optmat.2020.109887

    Article  CAS  Google Scholar 

  46. Chander S, Tripathi SK (2022) Recent advancement in efficient metal oxide-based flexible perovskite solar cells: a short review. Mater Adv 3:7198–7211. https://doi.org/10.1039/d2ma00700b

    Article  CAS  Google Scholar 

  47. Zhu Y, Mendelsberg RJ, Zhu J et al (2013) Structural, optical, and electrical properties of indium-doped cadmium oxide films prepared by pulsed filtered cathodic arc deposition. J Mater Sci 48:3789–3797. https://doi.org/10.1007/s10853-013-7179-y

    Article  CAS  Google Scholar 

  48. Çolak H, Türkoǧlu O (2013) Synthesis and characterization of Fe-doped CdO binary system. J Ceram Process Res 14:616–622

    Google Scholar 

  49. Morelhão SL, Kycia SW, Vartaniants IA (2022) A simple formula for determining nanoparticle size distribution by combining small-angle X-ray scattering and diffraction results. Acta Crystallogr Sect A Found Adv 78:459–462

    Article  Google Scholar 

  50. FadhlAbodood AA, Abdali K, Mousa Al-Ogaili AO et al (2023) Effect of molar concentration and solvent type on linear and NLO properties of Aurintricarboxylic (ATA) organic dye for image sensor and optical limiter applications. Int J Nanosci 22:22–23. https://doi.org/10.1142/S0219581X2350014X

    Article  Google Scholar 

  51. Reddy SR, Prasad R, Sharan A, Prasad B (2013) Development of laser edge isolation process for industrial solar cells. Int J Innov Res Sci Eng Technol 2:5780–5785

    Google Scholar 

  52. Jabbar SA, Khalil SM, Abdulridha AR et al (2022) Dielectric, AC conductivity and optical characterizations of (PVA-PEG) doped SrO hybrid nanocomposites. Key Eng Mater 936:83–92. https://doi.org/10.4028/p-41a757

    Article  Google Scholar 

  53. Aldulaimi NR, Al-Bermany E (2022) Tuning the bandgap and absorption behaviour of the newly-fabricated ultrahigh molecular weight polyethylene oxide- polyvinyl alcohol/ graphene oxide hybrid nanocomposites. Polym Polym Compos 30:096739112211121. https://doi.org/10.1177/09673911221112196

    Article  CAS  Google Scholar 

  54. Huda Abdul Razak N, Amin N, Sajedur Rahman K et al (2023) Influence of pulsed Nd:YAG laser oscillation energy on silicon wafer texturing for enhanced absorption in photovoltaic cells. Results Phys 48:106435. https://doi.org/10.1016/j.rinp.2023.106435

    Article  Google Scholar 

  55. Tuama AN, Al-Bermany E, Alnayli RS, et al (2024) A critical review of the evaluation of Sio2-incorporated Tio2 nanocomposite for photocatalytic activity. Silicon.  https://doi.org/10.1007/s12633-024-02870-8

  56. Jawad ED, Khudhair SH, Ali HN (2011) A thermodynamic study of adsorption of some days on Iraqi Bentoniet modified clay. Eur J Sci Res 60:63–70

    Google Scholar 

  57. Abdali K, Abass KH, Al-Bermany E et al (2022) Morphological, optical, electrical characterizations and Anti- Escherichia coli Bacterial Efficiency (AECBE) of PVA/PAAm/PEO polymer blend doped with silver NPs. Nano Biomed Eng 14:114–122. https://doi.org/10.5101/nbe.v14i2.p114-122

    Article  CAS  Google Scholar 

  58. Ghazi RA, Al-Mayalee KH, Al-Bermany E et al (2022) Impact of polymer molecular weights and graphene nanosheets on fabricated PVA-PEG/GO nanocomposites: morphology, sorption behavior and shielding application. AIMS Mater Sci 9:584–603. https://doi.org/10.3934/matersci.2022035

    Article  CAS  Google Scholar 

  59. Kafashan H, Rabiei Baboukani A (2024) Electrochemically deposited nanostructured Cd-doped SnS thin films: Structural and optical characterizations. Ceram Int 50:5717–5727. https://doi.org/10.1016/j.ceramint.2023.11.354

    Article  CAS  Google Scholar 

  60. Kafashan H, Orshesh Z, Bahrami A, Zakerian F (2024) Structural and optoelectronic properties of electrodeposited CdSe thin films: effect of Cu-dopant. Phys B Condens Matter 675:415623. https://doi.org/10.1016/j.physb.2023.415623

    Article  CAS  Google Scholar 

  61. Al Boukhari J, Zeidan L, Khalaf A, Awad R (2019) Synthesis, characterization, optical and magnetic properties of pure and Mn, Fe and Zn doped NiO nanoparticles. Chem Phys 516:116–124. https://doi.org/10.1016/j.chemphys.2018.07.046

    Article  CAS  Google Scholar 

  62. Alawi AI, Al-Bermany E, Alnayli RS et al (2024) Impact of SiO2–GO hybrid nanomaterials on opto-electronic behavior for novel glass quinary (PAAm–PVP–PVA/SiO2–GO) hybrid nanocomposite for antibacterial activity and shielding applications. Opt Quantum Electron 56:429. https://doi.org/10.1007/s11082-023-06070-3

    Article  CAS  Google Scholar 

  63. Zhu M, Qi H, Li C et al (2018) VO2 thin films with low phase transition temperature grown on ZnO/glass by applying substrate DC bias at low temperature of 250 °C. Appl Surf Sci 453:23–30. https://doi.org/10.1016/j.apsusc.2018.05.089

    Article  CAS  Google Scholar 

  64. Al-Mamoori MHK, Alshrefi SM, Jader MJ, Kodeary AK (2020) Structural characteristics, synthesis of novel TiO2/VO (II) composites thin films decorated with chlorophyllvia solvothermal-laser dual technique. NeuroQuantology 18:6–15. https://doi.org/10.14704/nq.2020.18.3.NQ20144

  65. Sze SM, Mattis DC (1970) Physics of semiconductor devices. Phys Today 23:75–75. https://doi.org/10.1063/1.3022205

    Article  Google Scholar 

  66. Amogne NY, Ayele DW, Tsigie YA (2020) Recent advances in anthocyanin dyes extracted from plants for dye sensitized solar cell. Mater Renew Sustain Energy 9:23. https://doi.org/10.1007/s40243-020-00183-5

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Babylon and Al-Mustaqbal University, Iraq.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Ammar Abd Ali Najm and Zaid L. Hadi designed the idea and experimental part. Saif M. Alshrefi prepared the samples and wrote the introduction, laser process, and experimental sections. Ehssan Al-Bermany performed an analysis of the SEM and optical properties. Zaid L. Hadi contributed to the electrical properties. Ammar Abd Ali contributed to the XRD and I-V tests and wrote the conclusions. Saif M. Alshrefi and Ameen Alwan Mohaimeed contributed to the histogram of SEM images of grain distribution and I-V results. All authors read and approved the final submission.

Corresponding author

Correspondence to Ehssan Al-Bermany.

Ethics declarations

Ethical Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najm, A.A.A., Alshrefi, S.M., Hadi, Z.L. et al. Synthesis of Novel [CdO(75%)/VO2(20%)/SiC(4%):p-Si] Heterojunction Composite Thin Films Decorated with Chlorophyll using Solvothermal-Laser Dual Technique for Solar Cell Applications. Silicon (2024). https://doi.org/10.1007/s12633-024-02997-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02997-8

Keywords

Navigation