Skip to main content
Log in

Numerical simulation and experimental research on fused-coating additive manufacturing of Sn63Pb37 thin-walled structures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal fused-coating additive manufacturing of Sn63Pb37 with single-track two-layer was performed. A 3D thermal FVM model has been developed to calculate the temperature field and solidification morphology of deposited layers. Results of numerical calculation, experimental of the micrographs and morphologies were presented, discussed and checked. The influences of the melt temperature and substrate temperature on the re-melted depth were analyzed. Physical values such as the ratio of overlap width and surface waviness were selected as indicators for the interlayer bond strength and macroscopic surface quality of copper deposits. The results suggest that when the temperatures of melt and substrate are 200 °C and 60 °C, respectively, the re-melted depth is close to zero because the heat from the liquid metal is still not hot enough to melt the surface of the previously deposited layers. As the temperature of melt and substrate increases, the re-melted depth reaches 0.5 mm or more, the collapse of previous deposited layers may occur due to the increased heat and the build-up of mass during deposition. A range of re-melted depth 0.2–0.5 mm is optimal for surface roughness and bonding strength of deposited layers. Moreover, the surface waviness was characterized by the difference of the maximum crest and minimum trough. When the temperatures of melt and substrate are 260 °C and 110 °C, respectively, and layer thickness 1.2 mm, surface waviness has the maximal value of 0.23 mm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Jaffar-Bandjee, J. Casas, G. Krijnen, Additive manufacturing: state of the art and potential for insect science. Curr. Opin. Insect. Sci. 30, 79–85 (2018)

    Article  Google Scholar 

  2. H. Dirk, S. Vanessa, W. Eric, E. Claus, Acta Mater. 117, 15 (2016)

    Google Scholar 

  3. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. Clare, Mater. Design 95, 5 (2016)

    Google Scholar 

  4. T. Abe, H. Sasahara, Precis. Eng. 45, 387–395 (2016)

    Article  Google Scholar 

  5. M.M. Francois, A. Sun, W.E. King, N.J. Henson, D. Tourret, C.A. Bronkhorst, N.N. Carlson, C.K. Newman, T. Haut, J. Bakosi, J.W. Gibbs, V. Livescu, S.A. Vander Wiel, A.J. Clarke, M.W. Schraad, T. Blacker, H. Lim, T. Rodgers, O. Walton, Curr. Opin. Solid State Mater. Sci. 21, 4 (2017)

    Article  Google Scholar 

  6. J.P. Kruth, L. Froyen, J. Van Vaerenbergh, P. Mercelis, M. Rombouts, B. Lauwersa, J. Mater. Process. Tech. 149, 1 (2004)

    Article  Google Scholar 

  7. A. Simchi, F. Petzoldt, H. Pohl, J. Mater. Process. Tech. 141, 3 (2003)

    Article  Google Scholar 

  8. L.E. Murr, S.M. Gaytan, D.A. Ramirez, E. Martinez, J. Hernandez, K.N. Amato, P.W. Shindo, F.R. Medina, R.B. Wicker, J. Mater. Sci. Technol. 28, 1 (2012)

    Article  Google Scholar 

  9. D. Ding, Z. Pan, D. Cuiuri, H. Li, Int. J. Adv. Manuf. Tech 81, 1 (2015)

    Google Scholar 

  10. J. Fuchs, C. Schneider, N. Enzinger, Wire-based additive manufacturing using an electron beam as heat source. Weld. World 62, 2 (2018)

    Article  Google Scholar 

  11. M. Froend, V. Ventzke, S. Riekehr, N. Kashaev, B. Klusemann, J. Enz. Mater. Charact. 143, 59–67 (2018)

    Article  Google Scholar 

  12. S. Ríos, P.A. Colegrove, F. Martina, A. Williams, Addit. Manuf. 21, 651–657 (2018)

    Article  Google Scholar 

  13. M.S. Hossain, D. Espalin, J. Ramos, M. Perez, R. Wicker, J. Manuf. Sci. Eng. 2014(136), 6 (2014)

    Google Scholar 

  14. J. Mireles, H.C. Kim, I.H. Lee, D. Espalin, F. Medina, E. MacDonald, R. Wicker 135, 1 (2013)

    Google Scholar 

  15. G. Zhao, Z. Wei, J. Du, R. Geng, S. Xu, Addit. Manuf. 22, 388–393 (2018)

    Article  Google Scholar 

  16. http://www-eng.lbl.gov/~dw/projects/DW4229_LHC_detector_analysis/calculations/emissivity2.pdf. Accessed 14 Aug 2003

  17. T.L. Bergman, F.P. Incropera, Fundamentals of heat and mass transfer (Wiley, Hoboken, 2011)

    Google Scholar 

  18. C.W. Hirt, B.D. Nichols, J. Comput. Phys. 39, 201–225 (1981)

    Article  ADS  Google Scholar 

  19. D.W. Cho, S.H. Lee, S.J. Na, J. Mater. Process. Tech. 213, 2 (2013)

    Article  Google Scholar 

  20. X.S. Wang, Y.J. Tan, P. Zhou, J. Therm. Sci. Tech. 11, 1 (2012)

    Google Scholar 

Download references

Acknowledgements

The research is financially supported by the State Key Development Program Research of China (2017YFB1103201) and Pre-research Project of Civil Aerospace (D020208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Du.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, J., Wei, Z., Zhang, Y. et al. Numerical simulation and experimental research on fused-coating additive manufacturing of Sn63Pb37 thin-walled structures. Appl. Phys. A 125, 875 (2019). https://doi.org/10.1007/s00339-019-3173-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3173-9

Navigation