Skip to main content
Log in

Investigation of Surface Residual Stress, Mechanical Properties, and Metallurgical Characterization of Inconel 625 Multilayer Thin-Wall Component Using Cold Metal Transfer Technique

  • Original Research Article
  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study investigates the metallurgical and mechanical properties of a nickel-based superalloy produced through wire + arc additive manufacturing (WAAM). It is a novel and fast fabrication technique based on layer-by-layer construction for rapid product development. A thin-wall component of Inconel 625 was successfully manufactured using a cold metal transfer (CMT)-based WAAM technique with an ErNiCrMo-3 wire after identifying suitable process parameters based on trial runs. The microstructure varies based on the travel and build directions, resulting in columnar, cellular, and equiaxed dendrites found in bottom, middle, and top regions. These dendritic structures evolve throughout the deposition process, predominantly influenced by temperature circumstances. The results of SEM/EDS analysis indicated that Nb and Mo segregation was lower in the interdendritic areas compared to the dendritic core areas of the thin-wall part. The XRD results discovered that the main crystal structure found in the WAAMed samples was a γ-FCC (face-centered cubic). Additionally, through EBSD analysis, the average grain size was identified as 86.45 µm in the travel direction and 89.15 µm in the build direction. The grain properties of the material were influenced by the reheating phenomenon and the circumstances of solidification that occurred throughout the layer-by-layer additive manufacturing process. The larger proportion of higher angle grain boundaries improves the mechanical properties. The average hardness in the travel direction was higher in the top (312 HV), middle (297 HV), and bottom (303 HV) sections than in the build direction (305 HV), (290 HV) and (294 HV), respectively. The mechanical properties, specifically tensile strength, exhibit anisotropy that varies depending on the direction of travel and build. The residual stress analysis shows that the as-built specimen is mainly affected by tensile stress in the travel and build directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Y. Liu, X. Wang, J.P. Oliveira, J. He, and X. Guan, Spatial and Directional Characterization of Wire and Arc Additive Manufactured Aluminum Alloy Using Phased Array Ultrasonic Backscattering Method, Ultrasonics, 2023, 132(04), p 107024. https://doi.org/10.1016/j.ultras.2023.107024

    Article  CAS  Google Scholar 

  2. I.O. Felice, J. Shen, A.F.C. Barragan, I.A.B. Moura, B. Li, B. Wang, H. Khodaverdi, M. Mohri, N. Schell, E. Ghafoori, T.G. Santos, and J.P. Oliveira, Wire and Arc Additive Manufacturing of Fe-Based Shape Memory Alloys: Microstructure, Mechanical and Functional Behavior, Mater. Des., 2023, 231(05), p 112004. https://doi.org/10.1016/j.matdes.2023.112004

    Article  CAS  Google Scholar 

  3. M.D. Barath Kumar, and M. Manikandan, Assessment of Process, Parameters, Residual Stress Mitigation, Post Treatments and Finite Element Analysis Simulations of Wire Arc Additive Manufacturing Technique, Metals Mater. Int., 2022 https://doi.org/10.1007/s12540-021-01015-5

    Article  Google Scholar 

  4. T. DebRoy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, and W. Zhang, Additive Manufacturing of Metallic Components—Process, Structure and Properties, Prog. Mater. Sci., 2018, 92, p 112–224.

    Article  CAS  Google Scholar 

  5. M.D.B. Kumar and M. Manikandan, Evaluation of Microstructure, Residual Stress, and Mechanical Properties in Different Planes of Wire + Arc Additive Manufactured Nickel-Based Superalloy, Met. Mater. Int., 2022, 28(12), p 3033–3056. https://doi.org/10.1007/s12540-022-01185-w

    Article  CAS  Google Scholar 

  6. P.P. Nikam, D. Arun, K.D. Ramkumar, and N. Sivashanmugam, Microstructure Characterization and Tensile Properties of CMT-Based Wire plus Arc Additive Manufactured ER2594, Mater Charact, 2020, 169(09), p 110671. https://doi.org/10.1016/j.matchar.2020.110671

    Article  CAS  Google Scholar 

  7. D.G. Ahn, Direct Metal Additive Manufacturing Processes and Their Sustainable Applications for Green Technology: A Review, Int. J. Precis. Eng. Manuf., 2016, 3(4), p 381–395.

    Google Scholar 

  8. F.M. Scotti, F.R. Teixeira, L.J. da Silva, D.B. de Araújo, R.P. Reis, and A. Scotti, Thermal Management in WAAM Through the CMT Advanced Process and an Active Cooling Technique, J. Manuf. Process., 2020, 57(06), p 23–35. https://doi.org/10.1016/j.jmapro.2020.06.007

    Article  Google Scholar 

  9. J. Feng, H. Zhang, and P. He, The CMT Short-Circuiting Metal Transfer Process and Its Use in Thin Aluminium Sheets Welding, Mater. Des., 2009, 30(5), p 1850–1852. https://doi.org/10.1016/j.matdes.2008.07.015

    Article  CAS  Google Scholar 

  10. M. Karmuhilan and S. Kumanan, Location-Dependent Microstructure Analysis and Mechanical Behavior of Inconel 625 Using Cold Metal Transfer(CMT) Based Wire and Arc Additive Manufacturing, Vacuum, 2023, 207(08), p 111682. https://doi.org/10.1016/j.vacuum.2022.111682

    Article  CAS  Google Scholar 

  11. A. Gamon, E. Arrieta, P.R. Gradl, C. Katsarelis, L.E. Murr, R.B. Wicker, and F. Medina, Microstructure and Hardness Comparison of As-Built Inconel 625 Alloy Following Various Additive Manufacturing Processes, Res. Mater., 2021, 12, 100239. https://doi.org/10.1016/j.rinma.2021.100239

    Article  CAS  Google Scholar 

  12. A.N. Tanvir, M.R. Ahsan, C. Ji, W. Hawkins, B. Bates, and D.B. Kim, Heat Treatment Effects on Inconel 625 Components Fabricated by Wire+ Arc Additive Manufacturing (WAAM)—Part 1: Microstructural Characterization, Int. J. Adv. Manuf. Technol., 2019, 103, p 3785–3798.

    Article  Google Scholar 

  13. V. Votruba, I. Diviš, L. Pilsová, P. Zeman, L. Beránek, J. Horváth, and J. Smolík, Experimental Investigation of CMT Discontinuous Wire Arc Additive Manufacturing of Inconel 625, Int. J. Adv. Manuf. Technol., 2022, 122(2), p 711–727. https://doi.org/10.1007/s00170-022-09878-7

    Article  Google Scholar 

  14. T.A. Rodrigues, F.W. Cipriano Farias, J.A. Avila, E. Maawad, N. Schell, T.G. Santos, and J.P. Oliveira, Effect of Heat Treatments on Inconel 625 Fabricated by Wire and Arc Additive Manufacturing: An in Situ Synchrotron x-ray Diffraction Analysis, Sci. Technol. Welding Join., 2023, 13, p 1–6.

    Google Scholar 

  15. T.A. Rodrigues, F.W. Farias, K. Zhang, A. Shamsolhodaei, J. Shen, N. Zhou, N. Schell, J. Capek, E. Polatidis, T.G. Santos, and J.P. Oliveira, Wire and Arc Additive Manufacturing of 316L Stainless Steel/Inconel 625 Functionally Graded Material: Development and Characterization, J. Mater. Res. Technol., 2022, 21, p 237–251. https://doi.org/10.1016/j.jmrt.2022.08.169

    Article  CAS  Google Scholar 

  16. W. Zhang, Y. Lei, W. Meng, Q. Ma, X. Yin, and L. Guo, Effect of Deposition Sequence on Microstructure and Properties of 316L and Inconel 625 Bimetallic Structure by Wire Arc Additive Manufacturing, J. Mater. Eng. Perform., 2021, 30(12), p 8972–8983. https://doi.org/10.1007/s11665-021-06137-w

    Article  CAS  Google Scholar 

  17. C. Zhang, Z. Qiu, H. Zhu, Z. Wang, O. Muránsky, M. Ionescu, Z. Pan, J. Xi, and H. Li, On the Effect of Heat Input and Interpass Temperature on the Performance of Inconel 625 Alloy Deposited Using Wire Arc Additive Manufacturing-Cold Metal Transfer Process, Metals., 2021, 12(1), p 46.

    Article  Google Scholar 

  18. B. Tomar, S. Shiva, and T. Nath, A Review on Wire Arc Additive Manufacturing: Processing Parameters, Defects, Quality Improvement and Recent Advances, Mater. Today Commun., 2022, 31(05), p 103739. https://doi.org/10.1016/j.mtcomm.2022.103739

    Article  CAS  Google Scholar 

  19. M. Raja, Y. Tiwari, M. Mukherjee, B. Maji, and A. Chatterjee, Effect of Bidirectional and Switchback Deposition Strategies on Microstructure and Mechanical Properties of Wire Arc Additive Manufactured Inconel 625, Int. J. Adv. Manuf. Technol., 2022, 119(7–8), p 4845–4861. https://doi.org/10.1007/s00170-022-08687-2

    Article  Google Scholar 

  20. R. Sasikumar, A.R. Kannan, S.M. Kumar, R. Pramod, N.P. Kumar, N.S. Shanmugam, Y. Palguna, and S. Sivankalai, Wire Arc Additive Manufacturing of Functionally Graded Material with SS 316L and IN625: Microstructural and Mechanical Perspectives, CIRP J. Manuf. Sci. Technol., 2022, 38, p 230–242. https://doi.org/10.1016/j.cirpj.2022.05.005

    Article  Google Scholar 

  21. M. Xu, Y. Chen, T. Zhang, J. Xie, P. He, and K. Wei, Effect of Grain Refinement on Strain Hardening Behavior of Nickel—Based Superalloy Fabricated by Wire Arc Additive Manufacturing, Mater. Lett., 2022, 324, p 132723. https://doi.org/10.1016/j.matlet.2022.132723

    Article  CAS  Google Scholar 

  22. A. Kreitcberg, V. Brailovski, and S. Turenne, Effect of Heat Treatment and Hot Isostatic Pressing on the Microstructure and Mechanical Properties of Inconel 625 Alloy Processed by Laser Powder Bed Fusion, Mater. Sci. Eng. A, 2017, 689(02), p 1–10. https://doi.org/10.1016/j.msea.2017.02.038

    Article  CAS  Google Scholar 

  23. M. Xu, Y. Chen, T. Zhang, J. Xie, P. He, and K. Wei, Effect of Grain Refinement on Strain Hardening Behavior of Nickel—Based Superalloy Fabricated by Wire Arc Additive Manufacturing Mingfang, Mater. Lett., 2022, 324(06), p 132723. https://doi.org/10.1016/j.matlet.2022.132723

    Article  CAS  Google Scholar 

  24. W. Yangfan, C. Xizhang, and S. Chuanchu, Microstructure and Mechanical Properties of Inconel 625 Fabricated by Wire-Arc Additive Manufacturing, Surf. Coatings Technol., 2019, 374(05), p 116–123. https://doi.org/10.1016/j.surfcoat.2019.05.079

    Article  CAS  Google Scholar 

  25. J.F. Wang, Q.J. Sun, H. Wang, J.P. Liu, and J.C. Feng, Effect of Location on Microstructure and Mechanical Properties of Additive Layer Manufactured Inconel 625 Using Gas Tungsten Arc Welding, Mater. Sci. Eng. A, 2016, 676(10), p 395–405. https://doi.org/10.1016/j.msea.2016.09.015

    Article  CAS  Google Scholar 

  26. Z. Qiu, Z. Wang, A.A. Gazder, S. van Duin, A. Studer, U. Garbe, Q. Gu, B. Wu, H. Zhu, D. Wexler, and H. Li, Stabilised Mechanical Properties in Ni-Based Hastelloy C276 Alloy by Additive Manufacturing under Different Heat Inputs Incorporated with Active Interlayer Temperature Control, Mater. Sci. Eng. A, 2023, 862, p 144434. https://doi.org/10.1016/j.msea.2022.144434

    Article  CAS  Google Scholar 

  27. R. Madesh and K.G. Kumar, Development of Metallurgical and Mechanical Properties of Nickel-Based Superalloy Employed by Wire Arc Additive Manufacturing Technique, J. Mater. Eng. Perform., 2023 https://doi.org/10.1007/s11665-023-08399-y

    Article  Google Scholar 

  28. A. Chintala, M. Tejaswi Kumar, M. Sathishkumar, N. Arivazhagan, and M. Manikandan, Technology Development for Producing Inconel 625 in Aerospace Application Using Wire Arc Additive Manufacturing Process, J. Mater. Eng. Perform., 2021, 30, p 5333–5341. https://doi.org/10.1007/s11665-021-05781-6

    Article  CAS  Google Scholar 

  29. J. Hönnige, C.E. Seow, S. Ganguly, X. Xu, S. Cabeza, H. Coules, and S. Williams, Study of Residual Stress and Microstructural Evolution in As-Deposited and Inter-Pass Rolled Wire plus Arc Additively Manufactured Inconel 718 Alloy after Ageing Treatment, Mater. Sci. Eng. A, 2021, 13(801), p 140368.

    Article  Google Scholar 

  30. N. Peterson, Y. Kobayashi, and P. Sanders, Assessment and Validation of Cosα Method for Residual Stress Measurement, 13th Inernational Conf. Shot Peen., p 80–86. (2017)

  31. M. Andurkar, T. Suzuki, M. Omori, B. Prorok, and J. Gahl, Residual Stress Measurements via x-ray Diffraction Cos α Method on Various Heat-Treated Inconel 625 Specimens Fabricated via Laser-Powder Bed Fusion, p 1048–1060 (2021)

  32. J. Lin, N. Ma, Y. Lei, and H. Murakawa, Measurement of Residual Stress in Arc Welded Lap Joints by Cosα x-ray Diffraction Method, J. Mater. Process. Technol., 2017, 243, p 387–394. https://doi.org/10.1016/j.jmatprotec.2016.12.021

    Article  CAS  Google Scholar 

  33. M. Andurkar, T. Suzuki, B.C. Prorok, J. Gahl, and S.M. Thompson, Residual Stress Measurements via x-ray Diffraction Cos-α Method on Various Heat-Treated Inconel 625 Specimens Fabricated via Laser-Powder Bed Fusion, 32nd Int. Solid Free. Fabr. Symp., p 1048–1060 (2021).

  34. R. Madesh and G.K. K, Multi-Layer Additive Manufacturing on Nickel-Based Superalloy by Optimization of Pulsed Mode Process Parameters of Single-Layer Bead Geometry, Mater. Today Commun., 2023, 37(11), p 107463. https://doi.org/10.1016/j.mtcomm.2023.107463

    Article  CAS  Google Scholar 

  35. R. Madesh, M. Makeshkumar, S.R. Surender, K.P. Shankar, and M. Sasi Kumar, Performance Characteristics of GMAW Process Parameters of Multi-Bead Overlap Weld Claddings, IOP Conf. Ser. Mater. Sci. Eng., 988(1). (2020)

  36. Y. Hua and Z. Liu, Experimental Investigation of Principal Residual Stress and Fatigue Performance for Turned Nickel-Based Superalloy Inconel 718, Materials., 2018, 11(6), p 879.

    Article  Google Scholar 

  37. K. Barath, K.M. Aravindan, J.A. Vinoth, and K.T. Sampath, Effect of Post-Fabrication Treatments on Surface Residual Stresses of Additive Manufactured Stainless Steel 316L, FME Trans., 2021, 49(1), p 87–94. https://doi.org/10.5937/FME2101087B

    Article  Google Scholar 

  38. F. Ceritbinmez, A. Günen, U. Gürol, and G. Çam, A Comparative Study on Drillability of Inconel 625 Alloy Fabricated by Wire Arc Additive Manufacturing, J. Manuf. Process., 2023, 89, p 150–169.

    Article  Google Scholar 

  39. S. Mohan Kumar, A. Rajesh Kannan, N. Pravin Kumar, R. Pramod, N. Siva Shanmugam, A.S. Vishnu, and S.G. Channabasavanna, Microstructural Features and Mechanical Integrity of Wire Arc Additive Manufactured SS321/Inconel 625 Functionally Gradient Material, J. Mater. Eng. Perform., 2021, 30(8), p 5692–5703. https://doi.org/10.1007/s11665-021-05617-3

    Article  CAS  Google Scholar 

  40. U. Gürol, M. Tümer, and S. Dilibal, Experimental Investigation of Wire Arc Additively Manufactured Inconel 625 Superalloy, Trans. Indian Inst. Met., 2023, 76(5), p 1371–1379. https://doi.org/10.1007/s12666-022-02797-x

    Article  CAS  Google Scholar 

  41. N. Hasani, M.H. Ghoncheh, R.M. Kindermann, H. Pirgazi, M. Sanjari, S. Tamimi, S. Shakerin, L.A.I. Kestens, M.J. Roy, and M. Mohammadi, Dislocations Mobility in Superalloy-Steel Hybrid Components Produced Using Wire Arc Additive Manufacturing, Mater. Des., 2022, 220, p 110899. https://doi.org/10.1016/j.matdes.2022.110899

    Article  CAS  Google Scholar 

  42. A. Kumar, K. Maji, and A. Shrivastava, Investigations on Deposition Geometry and Mechanical Properties of Wire Arc Additive Manufactured Inconel 625, Int. J. Precis. Eng. Manuf., 2023 https://doi.org/10.1007/s12541-023-00827-2

    Article  Google Scholar 

  43. M. Alizadeh-Sh, S.P.H. Marashi, E. Ranjbarnodeh, R. Shoja-Razavi, and J.P. Oliveira, Prediction of Solidification Cracking by an Empirical-Statistical Analysis for Laser Cladding of Inconel 718 Powder on a Non-Weldable Substrate, Opt. Laser Technol., 2019, 128, p 106244. https://doi.org/10.1016/j.optlastec.2020.106244

    Article  CAS  Google Scholar 

  44. F.W.C. Farias, V.R. Duarte, I.O. Felice, J. da, C.P. Filho, N. Schell, E. Maawad, J.A. Avila, J.Y. Li, Y. Zhang, T.G. Santos, and J.P. Oliveira, In Situ Interlayer Hot Forging Arc-Based Directed Energy Deposition of Inconel® 625: Process Development and Microstructure Effects, Addit. Manuf., 2023, 66, p 103476.

    CAS  Google Scholar 

  45. R. Medeiros, M.J. Roy, R. Morana, and P.B. Prangnell, Process Response of Inconel 718 to Wire + Arc Additive Manufacturing with Cold Metal Transfer, Mater. Des., 2020, 195, p 109031. https://doi.org/10.1016/j.matdes.2020.109031

    Article  CAS  Google Scholar 

  46. G.H.S.F.L. Carvalho, G. Venturini, G. Campatelli, and E. Galvanetto, Development of Optimal Deposition Strategies for Cladding of Inconel 625 on Carbon Steel Using Wire Arc Additive Manufacturing, Surf. Coatings Technol., 2023, 453, p 129128. https://doi.org/10.1016/j.surfcoat.2022.129128

    Article  CAS  Google Scholar 

  47. Z. Wang, Z. Gui, J. Wu, Q. Zhang, X. Wu, S. Lin, J. Tian, and C. Guo, Microstructure and High-Temperature Mechanical Properties of Inconel 718 Superalloy Weldment Affected by Fast-Frequency Pulsed TIG Welding, J. Manuf. Process., 2023, 89, p 338–348. https://doi.org/10.1016/j.jmapro.2023.01.076

    Article  Google Scholar 

  48. M. Xu, S. Chen, T. Yuan, X. Jiang, and H. Zhang, Effect of Thermal Cycles on the Microstructure and Properties of the Al-Zn-Mg-Cu Alloy during Wire-Arc Additive Manufacturing, J. Alloys Compd., 2022, 928, p 167172. https://doi.org/10.1016/j.jallcom.2022.167172

    Article  CAS  Google Scholar 

  49. R.M. Kindermann, M.J. Roy, R. Morana, and P.B. Prangnell, Process Response of Inconel 718 to Wire + Arc Additive Manufacturing with Cold Metal Transfer, Mater. Des., 2020, 195, p 109031. https://doi.org/10.1016/j.matdes.2020.109031

    Article  CAS  Google Scholar 

  50. H. Raushan, A. Bansal, V. Singh, A.K. Singla, J. Singla, A. Omer, J. Singh, D.K. Goyal, N. Khanna, and R.S. Rooprai, Dry Sliding and Slurry Abrasion Behaviour of Wire Arc Additive Manufacturing—Cold Metal Transfer (WAAM-CMT) Cladded Inconel 625 on EN8 Steel, Tribol. Int., 2023, 179, p 108176. https://doi.org/10.1016/j.triboint.2022.108176

    Article  CAS  Google Scholar 

  51. J. Han, B. Liu, X. Chen, G. Zhang, L. Lu, Y. Xin, Z. Luo, X. Zhang, Y. Cai, and Y. Tian, Wire and Arc Additive Manufactured an Innovative Material Ti-Al-V-Ni-Cr-Mo-Nb-Cu Alloy: Study of Its Microstructure and Mechanical Properties, Mater. Lett., 2023, 330, p 133304. https://doi.org/10.1016/j.matlet.2022.133304

    Article  CAS  Google Scholar 

  52. G.G. Goviazin, D. Rittel, and A. Shirizly, Achieving High Strength with Low Residual Stress in WAAM SS316L Using Flow-Forming and Heat Treatment, Mater. Sci. Eng. A, 2023, 873(04), p 145043. https://doi.org/10.1016/j.msea.2023.145043

    Article  CAS  Google Scholar 

  53. A. Pandey and V. Gaur, Effect of Dwell Time on Fatigue Properties of Wire-Arc Additively Manufactured IN718 Alloy, Int. J. Fatigue, 2023, 176, p 107863. https://doi.org/10.1016/j.ijfatigue.2023.107863

    Article  CAS  Google Scholar 

  54. V. Gornyakov, J. Ding, Y. Sun, and S. Williams, Understanding and Designing Post-Build Rolling for Mitigation of Residual Stress and Distortion in Wire Arc Additively Manufactured Components, Mater. Des., 2022, 213, p 110335. https://doi.org/10.1016/j.matdes.2021.110335

    Article  CAS  Google Scholar 

  55. Y. Jing, X. Fang, N. Xi, T. Chang, Y. Duan, and K. Huang, Improved Tensile Strength and Fatigue Properties of Wire-Arc Additively Manufactured 2319 Aluminum Alloy by Surface Laser Shock Peening, Mater. Sci. Eng. A, 2023, 864(01), p 144599. https://doi.org/10.1016/j.msea.2023.144599

    Article  CAS  Google Scholar 

  56. Y. Koli, S. Arora, S. Ahmad, N.Y. Priya, and Z.A. Khan, Investigations and Multi-Response Optimization of Wire Arc Additive Manufacturing Cold Metal Transfer Process Parameters for Fabrication of SS308L Samples, J. Mater. Eng. Perform., 2023, 32(5), p 2463–2475. https://doi.org/10.1007/s11665-022-07282-6

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge School of Mechanical Engineering, Vellore Institute of Technology, Vellore, for providing research facilities to the successful completion of work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Ramanujam.

Ethics declarations

Conflict of interest

There is no conflict of interest stated by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahendiran, S., Ramanujam, R. Investigation of Surface Residual Stress, Mechanical Properties, and Metallurgical Characterization of Inconel 625 Multilayer Thin-Wall Component Using Cold Metal Transfer Technique. J. of Materi Eng and Perform (2024). https://doi.org/10.1007/s11665-023-09119-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11665-023-09119-2

Keywords

Navigation