Skip to main content
Log in

Influence of porous configuration on dielectric and piezoelectric properties of KNN–BKT lead-free ceramic

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Porous piezoelectric ceramics are the far and wide known graded functional materials. Of late, lead-free porous piezoelectric systems have increased enormous consideration, because of the factors inclusive of environmental friendly, light weight, low acoustic impedance and versatility. Porous lead-free (1-x) (K, Na) NbO3. x (Bi, K) TiO3 (KNN–BKT) solid solution, was synthesized by solid state method. The porogen utilized as part of this work was ammonium oxalate monohydrate in 10, 20, 30 and 40 wt% to get diverse porosity levels in the lead-free specimen. Primary evaluation of the porous specimen has been done with respect to its phase by XRD and surface microstructure using SEM. The specimens were poled and their piezoelectric coefficients were assessed at varied temperatures. Dielectric properties as a function of temperature and frequency are also reported for the specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Geis, P. Lobmann, S. Seifert, J. Fricke, Ferroelectr 241, 75 (2000)

    Article  Google Scholar 

  2. W.A. Smith, Ultrasonics (1989). https://doi.org/10.1109/ultsym.1989.67088

    Article  Google Scholar 

  3. A.J. Dantziger, Multicomponent systems of ferroelectric solid solutions: physics, crystallochemistry, technology, design aspects of piezoelectric materials. (Rostov on Don, Russia: Rostov State University Press, 2001) Vol. 1–2

  4. A.A. Rybyanets, IEEE Trans. UFFC 58, 1757 (2011)

    Article  Google Scholar 

  5. A.N. Rybyanets, Ferroelectr 419, 90 (2011)

    Article  Google Scholar 

  6. Sidney B. Lang, Erling Ringgaard, Appl. Phys. A 107, 631 (2012)

    Article  ADS  Google Scholar 

  7. F. Zhang, L. Han, S. Bai, T. Sun, T. Karaki, M. Adachi, Jpn. J. Appl. Phys. 47, 7685 (2008)

    Article  ADS  Google Scholar 

  8. P. Zhao, B.P. Zhang, R. Tu, T. Goto, J. Am. Ceram. Soc. 91, 3078 (2008)

    Article  Google Scholar 

  9. N. Kumada, T. Kyoda, Y. Yonesaki, T. Takei, N. Kimura, Mater. Res. Bull. 42, 1856 (2007)

    Article  Google Scholar 

  10. Y. Saito, H. Takao, I. Tani, T. Nonoyama, K. Takatori, Nature 432, 84 (2004)

    Article  ADS  Google Scholar 

  11. B. Jaffe, W.R. Cook Jr., H. Jaffe, Piezoelectric ceramics (Academic Press, New York, 1971), pp. 115–181

    Google Scholar 

  12. T.R. Shrout, S.J. Zhang, J. Electroceram. 19, 111 (2007)

    Article  Google Scholar 

  13. B. Malic, J. Bernard, A. Bencan, M. Kosec, J. Eur. Ceram. Soc. 28, 1191 (2008)

    Article  Google Scholar 

  14. L.B. Kong, T. Li, H.H. Hng, F. Boey, T. Zhang, S. Li, Waste Energy Harvesting (Springer, Berlin, 2014), pp. 19–113

    Book  Google Scholar 

  15. Andrey N. Rybyanets, Ferroelectrics 419, 90 (2011)

    Article  Google Scholar 

  16. J. Rödel, W. Jo, K.T.P. Seifert, E.M. Anton, T. Granzow, D. Damjanovic, J. Am. Ceram. Soc. 92, 1153 (2009)

    Article  Google Scholar 

  17. T. Maeda, N. Takiguchi, M. Ishikawa, T. Hemsel, T. Morita, Mater. Lett. 64, 125 (2010)

    Article  Google Scholar 

  18. K. Hishinuma, Bull. Mater. Sci. 18, 811 (1995)

    Article  Google Scholar 

  19. H. Du, W. Zhou, D. Zhu, L. Fa, S. Qu, Y. Li, Z. Pei, J. Amer. Ceram. Soc 91, 2903 (2008)

    Article  Google Scholar 

  20. Y. Guo, K. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)

    Article  ADS  Google Scholar 

  21. M. Wu, L. Fang, L. Liu, X. Zhou, Y. Huang, Y. Li, Mater. Chem. Phys. 132, 1015 (2012)

    Article  Google Scholar 

  22. C.F. Buhrer, J. Chem. Phys 36, 798 (1962)

    Article  ADS  Google Scholar 

  23. T. Wada, A. Fukui, Y. Matsuo, Jpn. J. Appl. Phys. 41, 7025 (2002)

    Article  ADS  Google Scholar 

  24. Haiying Xing, Panfeng Huang, Chunhua Zhang, Dan Li, Yi Zhang, Wenpeng Guo, Gaolei Zhao, Qingwei Liao, Mater. Lett. 160, 38 (2015)

    Article  Google Scholar 

  25. A.B. Kounga, S.T. Zhang, W. Jo, T. Granzow, J. Rodel, Appl. Phys. Lett. 92, 222902 (2008)

    Article  ADS  Google Scholar 

  26. H. Du, W. Zhou, F. Luo, D. Zhu, S. Qu, Y. Li, Z. Pei, J. Phys. D Appl. Phys. 41, 115413 (2008)

    Article  Google Scholar 

  27. F.F. Lange, L. Atteraas, F. Zok, J.R. Porter, Acta. Metal. Mater. 39, 209 (1991)

    Article  Google Scholar 

  28. R. López, F. González, M.P. Cruz, M.E. Villafuerte-Castrejon, Mater. Res. Bull. 46, 70 (2011)

    Article  Google Scholar 

  29. K. Wang, B.P. Zhang, J.F. Li, L.M. Zhang, J. Electroceram. 21, 251 (2007)

    Article  Google Scholar 

  30. Y. Liao, D. Wang, H. Wang, T. Wang, Q. Zheng, J. Yang, K.W. Kwok, D. Lin, Ceram Int. 45(10), 13179–13186 (2019)

    Article  Google Scholar 

  31. A. Sabin, Problems in particle size: laser diffraction observations, J. GXP Compliance 15, 4 (2011) http://www.ivtnetwork.com/journal-gxp-compliance/journal-of-gxp-compliance-2687GXP

  32. P.V. Ivanov, V.V. Eremkin, V.G. Smotrakov, E.S. Tsikhotskii, Inorg. Mater. 38, 408 (2002)

    Article  Google Scholar 

  33. R. Sumang, T. Bongkarn, J. Mater. Sci. 46, 6823 (2011)

    Article  ADS  Google Scholar 

  34. R. Sumang, T. Bongkarn, Ferroelectrics 383, 57 (2009)

    Article  Google Scholar 

  35. B. Praveen kumar, H.H. Kumar, D.K. Kharat, Bull. Mater 28, 453 (2005)

    Article  Google Scholar 

  36. R.K. Gupta, T.A. Venkatesh, Acta Mater. 54, 4063 (2006)

    Article  Google Scholar 

  37. Amrita Singh, Ratnamala Chatterjee, AIP Adv. 3, 032129 (2013)

    Article  ADS  Google Scholar 

  38. Amir Khesro, Ph.D Thesis, Department of Material Science and Engineering University of Sheffield (2016). http://etheses.whiterose.ac.uk/id/eprint/16185

  39. Franziska Eichhorn, Jonas Biggemann, Simone Kellermann, Akinobu Kawai, Kensuke Kato, Kenichi Kakimoto, Tobias Fey, Adv. Eng. Mater. 00, 1700420 (2017)

    Article  Google Scholar 

  40. A. Dean, Lange’s Chemistry Handbook (McGraw-Hill Professional, New York, 2004), p. 256

    Google Scholar 

  41. Guoliang Xue, Wu Qiankun, Gang Li, Huaizhou Lin, Gang Liu, Yi Chen, Xiaokui Liu, Yan Yan, J. Adv. dielectr. 7, 1750028 (2017)

    Article  ADS  Google Scholar 

  42. Vikram S Yadav, Devendra K Sahu, Yashpal Singh, D.C.Dhubkarya, in Proceedings of IMECS, Vol 3, 2010

  43. A.M.M. Farea, S. Kumar, K.M. Batoo, A. Yousef, C.G. Lee, Alimuddin, J. Alloys compd. 464, 361 (2008)

    Article  Google Scholar 

  44. T. Prodromakis, C. Papavassiliou, Appl. Surf. Sci. 255, 6989 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We like to acknowledge Anna University Chennai, IITM chennai for their technical and characterization facilities throughout this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thenmuhil Deivarajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pinheiro, E.D., Deivarajan, T. Influence of porous configuration on dielectric and piezoelectric properties of KNN–BKT lead-free ceramic. Appl. Phys. A 125, 784 (2019). https://doi.org/10.1007/s00339-019-3083-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-3083-x

Navigation