Skip to main content
Log in

Electro-crystallized SnO2 nanoparticles for river-water heavy-metal ion pollutant removal process

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

SnO2 nanoparticles were electro-crystallized in an electrochemical cell containing two tin electrodes, and an electrolyte solution of C4H12Cl and the effect of growth conditions has been studied on their structural properties. The XRD patterns confirmed the formation of tetragonal tin dioxide at 700 °C. SEM images showed the mean particle size ranges from 12 to 35 nm, depending on growth conditions. The particles synthesized at 25 V, 55 °C, and 0.004 M with mean size of about 12 nm are the smallest particles. The band gap of SnO2 nanoparticles is found to be 4.2 eV. The removal of cobalt and cadmium from laboratory water and Seimareh and Karoon rivers in Iran has been investigated. The results showed that in the optimal removal conditions; 10 V, pH of 13, initial heavy metals’ concentration of 100 mg/L and reaction time of 30 and 50 min, the removal efficiency of cadmium and cobalt is 100% and 99.95%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Sci. Total Environ. 424, 1 (2012)

    Article  ADS  Google Scholar 

  2. P. Xu, G. Zeng, D. Huang, S.C. Feng, C. Lai, M. Zhao, C. Huang, N. Li, Z. Wei, G. Xie, Colloid Surf. A 419, 147 (2013)

    Article  Google Scholar 

  3. S.S. Obaid, D.K. Gaikwad, M.I. Sayyed, K. Al-Rashdi, P.P. Pawar, Mater. Today Proc. 5, 17930 (2018)

    Article  Google Scholar 

  4. T.C. Prathna, S. Kumar Sharma, M. Kennedy, Sep. Purif. Technol. 199, 260 (2018)

    Article  Google Scholar 

  5. E. Lindsay, W. Anderson, H. Krkošek, K. Amina, B. Stoddart, F. Trueman, G.A. Gagnon, Environ. Sci. Technol. 51, 1414 (2017)

    Article  ADS  Google Scholar 

  6. M.A. Barakat, Arab. J. Chem. 4, 361 (2011)

    Article  Google Scholar 

  7. M. Naushad, Z. Al-Othman, M. Islam, Int. J. Environ. Sci. Technol. 10(3), 567 (2013)

    Article  Google Scholar 

  8. M. Naushad, T. Ahamad, Z.A. Al-Othman, M. AliShar, N.S. AlHokbany, S.M. Alshehri, Ind. Eng. Chem. Res. 29, 78 (2015)

    Article  Google Scholar 

  9. M. Naushad, Z.A. Al-Othman, G. Sharma, Ionics 21(5), 1453 (2015)

    Article  Google Scholar 

  10. A. Shahat, M. Rabiul Awual, M. Naushad, Chem. Eng. J. 271, 155 (2015)

    Article  Google Scholar 

  11. M. Naushad, A. Mittal, M. Rathore, V. Gupta, Desalin. Water Treat. 54, 2883 (2015)

    Article  Google Scholar 

  12. S. Mosivand, I. Kazeminezhad, S. Piri Fathabad, Microchem. J. 146, 534 (2019)

    Article  Google Scholar 

  13. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 211–212, 317 (2012)

    Article  Google Scholar 

  14. V. Krstić, T. Urošević, B. Pešovski, Chem. Eng. Sci. 192, 273 (2018)

    Article  Google Scholar 

  15. H. Chen, A. Xie, S. You, IOP Conf. Ser. Mater. Sci. Eng. 301, 012160 (2018)

    Article  Google Scholar 

  16. M. Fan, J. Hu, R. Cao, W. Ruan, X. Wei, Chemosphere 200, 330 (2018)

    Article  ADS  Google Scholar 

  17. I. Kazeminezhad, S. Mosivand, J. Magn. Magn. Mater. 422, 84 (2017)

    Article  ADS  Google Scholar 

  18. S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, A. Kumar, J.M.D. Coey, Environ. Sci. Water Res. Technol. 4, 2179 (2018)

    Article  Google Scholar 

  19. S. Piri Fathabad, S. Mosivand, I. Kazeminezhad, J. Electron. Mater. 47, 7034 (2018)

    Article  ADS  Google Scholar 

  20. S. Mosivand, I. Kazeminezhad, J. Mater. Sci. Mater. Electron. 29, 12466 (2018)

    Article  Google Scholar 

  21. S. Mosivand, I. Kazeminezhad, RSC Adv. 5, 14796 (2015)

    Article  Google Scholar 

  22. F. Gu, W. Huang, S. Wang, X. Cheng, Y. Hu, Ch. Li, J. Power Sources. 268, 922 (2014)

    Article  ADS  Google Scholar 

  23. M. Parlinska-Wojtan, R. Sowa, M. Pokora, A. Martyła, K. Lee, A. Kowal, Surf. Interface Anal. 46, 1090 (2014)

    Article  Google Scholar 

  24. J. Gajendiran, V. Rajendran, Mater. Lett. 139, 116 (2015)

    Article  Google Scholar 

  25. K. Jeyasubramanian, G.S. Hikku, M. Sivashakthi, Mater. Sci. Semicond. Process. 51, 25 (2016)

    Article  Google Scholar 

  26. M.M. Bagheri-Mohagheghi, N. Shahtahmasebi, M.R. Alinejad, A. Youssefi, M. Shokooh-Saremi, Phys B 403, 2431 (2008)

    Article  ADS  Google Scholar 

  27. S. Sarmah, A. Kumar, Indian J. Phys. 84(9), 1211 (2010)

    Article  ADS  Google Scholar 

  28. M. Krishna, S. Komarneni, Ceram. Int. 35, 3375 (2009)

    Article  Google Scholar 

  29. T. Krishnakumar, N. Pinna, K.P. Kumari, K. Perumal, R. Jayaprakash, Mater. Lett. 62, 3437 (2008)

    Article  Google Scholar 

  30. G. Satishkumar, L. Titelman, M.V. Landau, J. Solid State Chem. 182, 2822 (2009)

    Article  ADS  Google Scholar 

  31. A. Nilchi, T.S. Dehaghan, S.R. Garmarodi, Desalination 321, 67 (2013)

    Article  Google Scholar 

  32. T.G. Conti, A.J. Chiquito, R.O. da Silva, E. Longo, E.R. Leite, J. Am. Ceram. Soc. 9356, 3862 (2010)

    Article  Google Scholar 

  33. T.T. Van Tran, T. Si Bui, S. Turrell, B. Capoen, P. Roussel, M. Bouazaoui, M. Ferrari, O. Cristiniand, C. Kinowski, J. Raman Spectrosc. 43, 869 (2012)

    Article  ADS  Google Scholar 

  34. H.H. Son, W.G. Lee, Surf. Interface Anal. 44, 989 (2012)

    Article  Google Scholar 

  35. N. Rajesh, J.C. Kannan, T. Krishnakumar, S.G. Leonardi, G. Neri, Sensor. Actuator B 194, 96 (2014)

    Article  Google Scholar 

  36. M. Eebrary, M.G. Henaatshoar, in Iranian Conference on Physics, vol. 1325 (2016)

  37. S. Mosivand, I. Kazeminezhad, CrystEngComm 18, 417 (2016)

    Article  Google Scholar 

  38. L. Aswaghosh, D. Manoharan, N. Victor Jaya, Phys. Chem. Chem. Phys. 18, 5995 (2016)

    Article  Google Scholar 

  39. A. Amirsalari, S.F. Shayesteh, Superlattices Microstruct. 82, 507 (2015)

    Article  ADS  Google Scholar 

  40. N. Alimohammadi, S.R. Shadizadeh, I. Kazeminezhad, Fuel 111, 505 (2013)

    Article  Google Scholar 

  41. S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, Int. J. Mol. Sci. 14, 10383 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Lorestan University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Mosivand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 100 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahanshahi, S.Z., Mosivand, S. Electro-crystallized SnO2 nanoparticles for river-water heavy-metal ion pollutant removal process. Appl. Phys. A 125, 652 (2019). https://doi.org/10.1007/s00339-019-2949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2949-2

Navigation