Skip to main content
Log in

Electro‑crystallized NiO nanoparticles for river‑water treatment applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

There is a fundamental relationship between properties of nanoparticles and their preparation method. In this study, NiO nanoparticles were electro-crystallized in an electrochemical cell containing two nickel electrodes, and an electrolyte solution of tetramethylammonium chloride and NaOH. The optimized reaction parameters obtained for the effective electro-crystallization of NiO nanoparticles were applied potential of 10 V, electrolyte concentration of 0.075 M, bath temperature of 20 °C, and annealing temperature of 400 °C. XRD results approved the formation of cubic structure of NiO. SEM images showed the mean particle size of spherical particles ranging from 12 to 47 nm. Based on UV–visible results, the value of band gap for typical NiO nanoparticles was obtained ~ 3.56 eV. The photoluminescence spectrum of a typical NiO sample showed two peaks at 370 nm and 670 nm, related to 3d8 electron transition, recombination between electrons and holes, or defects in NiO nanoparticles. The magnetization curves showed that all samples are magnetically soft and the specific magnetization is dependent on the particle size. The electro-oxidation of Ni was particularly effective for cobalt and cadmium removal from laboratory water at high voltages. This protocol was also successful for removing cobalt and cadmium from two rivers in Iran. Based on atomic absorption spectroscopy analysis, it is possible to remove ~ 100% of cobalt and cadmium from water using obtained nanoparticles. The method could be economically scaled up to industrial capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

The data are available in the manuscript.

References

  1. M. Arif, A. Sanger, M. Shkir, A. Singh, R.S. Katiyar, Phys. B 552, 88 (2019)

    ADS  Google Scholar 

  2. B. Polteau, F. Tessier, F. Cheviré, L. Cario, F. Odobel, S. Jobic, Solid State Sci. 54, 37 (2016)

    ADS  Google Scholar 

  3. H. Abbas, K. Nadeem, A. Hafeez, A. Hassan, N. Saeed, H. Krenn, Ceram. Int. 45, 17289 (2019)

    Google Scholar 

  4. K. Perumal Raj, V. Thangaraj, A.P. Uthirakumar, Chem. Sci. Rev. Lett. 4(14), 494 (2015)

    Google Scholar 

  5. M. Bonomo, J. Nanopart. Res. 20, 222 (2018)

    ADS  Google Scholar 

  6. A.A. Adewunmi, M. Shahzad Kamal, T. Ivan Solling, J. Petrol. Sci. Eng. 196, 107680 (2021)

    Google Scholar 

  7. J. Xu, M. Wang, Y. Liu, J. Li, H. Cui, Adv. Powder Technol. 30, 861 (2019)

    Google Scholar 

  8. A. Khatri, P.S. Rana, Phys. B 579, 411905 (2020)

    Google Scholar 

  9. M. Isakhan, M. Nawaz, M. Bilal Tahir, T. Iqbal, M. Pervaiz, M. Rafique, F. Aziz, U. Younas, H. Alrobei, Inorg. Chem. Commun. 122, 108300 (2020)

    Google Scholar 

  10. K.S. Khashan, G.M. Sulaiman, A.H. Hamad, F.A. Abdulameer, A. Hadi, Appl. Phys. A 123, 190 (2017)

    ADS  Google Scholar 

  11. F. Ascencio, A. Bobadilla, R. Escudero, Appl. Phys. A 125, 279 (2019)

    ADS  Google Scholar 

  12. J. Al Boukhari, A. Khalaf, R. Sayed Hassan, R. Awad, Appl. Phys. A 126, 323 (2020)

    ADS  Google Scholar 

  13. S. Mosivand, I. Kazeminezhad, RSC Adv. 5, 14796 (2015)

    ADS  Google Scholar 

  14. S. Mosivand, I. Kazeminezhad, Ceram. Int. 41, 8637 (2015)

    Google Scholar 

  15. S. Mosivand, L.M.A. Monzon, K. Ackland, I. Kazeminezhad, J.M.D. Coey, J. Nanopart. Res. 15, 1795 (2013)

    ADS  Google Scholar 

  16. P. Rajasulochana, V. Preethy, Resource-Effic. Technol. 2, 175 (2016)

    Google Scholar 

  17. L. Joseph, B.M. Jun, J.R.V. Flora, C.M. Park, Y. Yoon, Chemosphere 229, 142 (2019)

    ADS  Google Scholar 

  18. K.H. Vardhan, P.S. Kumar, R.C. Panda, J. Mol. Liq. 290, 111197 (2019)

    Google Scholar 

  19. M.A. Barakat, Arab. J. Chem. 4, 361 (2011)

    Google Scholar 

  20. V. Khandegar, A.K. Saroha, J. Environ. Manage. 128, 949 (2013)

    Google Scholar 

  21. E. Chibowski, A. Szcześ, Chemosphere 203, 54 (2018)

    ADS  Google Scholar 

  22. S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, A. Kumar, J.M.D. Coey, Environ. Sci. Water Res. Technol. 4, 2179 (2018). https://doi.org/10.1039/c8ew00645h

    Article  Google Scholar 

  23. S.Z. Shahanshahi, S. Mosivand, Appl. Phys. A 125, 652 (2019)

    ADS  Google Scholar 

  24. S.P. Fathabad, S. Mosivand, I. Kazeminezhad, J. Electron. Mater. 47, 7034 (2018)

    ADS  Google Scholar 

  25. S. Mosivand, I. Kazeminezhad, S. Piri Fathabad, Microchem. J. 146, 534 (2019)

    Google Scholar 

  26. I. Kazeminezhad, S. Mosivand, J. Magn. Magn. Mater. 422, 84 (2017)

    ADS  Google Scholar 

  27. S. Mosivand, I. Kazeminezhad, J. Mater. Sci. Mater. Electron. 29, 12466 (2018)

    Google Scholar 

  28. P. Xu, G.M. Zeng, D.L. Huang, C.L. Feng, S. Hu, M.H. Zhao, C. Lai, Z. Wei, C. Huang, G.X. Xie, Z.F. Liu, Sci. Total Environ. 424, 1 (2012)

    ADS  Google Scholar 

  29. M. Naseem Siddique, A. Ahmed, T. Ali, P. Tripathi, AIP Conf. Proceed. 1953, 030027 (2018). https://doi.org/10.1063/1.5032362

    Article  Google Scholar 

  30. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd edn. (Wiley, United Kingdom, 2001).

    Google Scholar 

  31. M. Arif, A. Sanger, M. Shkir, A. Singh, R.S. Katiyar, Physica B. Phys. Condens. Matter 552, 88 (2019)

    ADS  Google Scholar 

  32. M. Hashem, E. Saion, N.M. Al-Hada, H.M. Kamari, A.H. Shaari, Z.A. Talib, S.B. Paiman, M.A. Kamarudeen, Results Phys. 6, 1024 (2016)

    ADS  Google Scholar 

  33. A.M. Roy, Appl. Phys. A 126, 576 (2020). https://doi.org/10.1007/s00339-020-03742-9

    Article  ADS  Google Scholar 

  34. A.M. Roy, Jetp Lett. 112, 173–179 (2020). https://doi.org/10.1134/S0021364020150023

    Article  ADS  Google Scholar 

  35. P. Cubillas, M.W. Anderson, Synthesis Mechanism: Crystal Growth and Nucleation, in Zeolites and Catalysis, Synthesis, Reactions and Applications. ed. by J. Čejka, A. Corma, S. Zones (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2010)

    Google Scholar 

  36. P.G. Vekilov, Nanoscale 2, 2346 (2010)

    ADS  Google Scholar 

  37. J.J. De Yoreo, P.G. Vekilov, Rev. Mineral. Geochem. 54(1), 57 (2003). https://doi.org/10.2113/0540057

    Article  Google Scholar 

  38. F.C. Meldrum, H. Colfen, Nanoscale 2(11), 2326 (2010)

    Google Scholar 

  39. A.K. Singh, O.N. Srivastava, K. Singh, Shape and size-dependent magnetic properties of Fe3O4 nanoparticles synthesized using piperidine. Nanoscale Res. Lett. 12, 298 (2017)

    ADS  Google Scholar 

  40. S. Mosivand, L.M.A. Monzon, I. Kazeminezhad, J.M.D. Coey, Int. J. Mol. Sci. 14, 10383 (2013)

    Google Scholar 

  41. J. Adhikary, P. Chakraborty, B. Das, A. Datta, S. Kumar Dash, S. Roy, J.W. Chen, T. Chattopadhyay, RSC Adv. 5, 35917 (2015)

    ADS  Google Scholar 

  42. V.P. Muhammed Shajudheena, M. Sivakumarb, S. Saravana Kumarc, Mater.Today Proceed. 3, 2450 (2016)

    Google Scholar 

  43. P. Mallick, Indian J. Pure Appl. Phys. 55, 187 (2017)

    Google Scholar 

  44. X. Wang, J. Song, L. Gao, J. Jin, H. Zheng, Z. Zhang, Nanotechnology 16, 37 (2005)

    ADS  Google Scholar 

  45. M. El-Kemary, N. Nagy, I. El-Mehasseb, Mater. Sci. Semicond. Process. 16, 1747 (2013)

    Google Scholar 

  46. G. Boschloo, A. Hagfeldt, J. Phys. Chem. B 105, 3039 (2001)

    Google Scholar 

  47. F. Davar, Z. Fereshteha, M. Salavati-Niasari, J. Alloy. Compd. 476, 797 (2009)

    Google Scholar 

  48. M.P. Deshpande, K.N. Patel, V.P. Gujarati, K. Patel, S.H. Chaki, Adv. Mater. Res. 1141, 65 (2016)

    Google Scholar 

  49. V. Gupta, N. Sharma, U. Singh, M. Arif, A. Singh, Optik (Stuttg) 143, 115 (2017)

    ADS  Google Scholar 

  50. K. Anandan, V. Rajendran, Nanosci. Nanotechnol. Int. J. 2, 24 (2012)

    Google Scholar 

  51. K. Anandan, V. Rajendran, Mater. Sci. Semicond. Process. 14, 43 (2011)

    Google Scholar 

  52. U.K. Panigrahi, P.K. Das, R. Biswal, V. Sathe, P.D. Babu, A. Mitra, P. Mallick, J. Alloys Comp. 833, 155050 (2020)

    Google Scholar 

  53. U.K. Panigrahi, V. Sathe, P.D. Babu, A. Mitra, P. Mallick, Nano Express 1, 020009 (2020)

    ADS  Google Scholar 

  54. A. Gorschluter, H. Merz, Phys. Rev. B. 49, 17293 (1994)

    ADS  Google Scholar 

  55. A. Amirsalari, S.F. Shayesteh, Superlattices Microstruct. 82, 507 (2015)

    ADS  Google Scholar 

  56. E. Cazzanelli, A. Kuzmin, N. Mironova-Ulmane, G. Mariotto, Phys. Rev. B. 71, 134415 (2005)

    ADS  Google Scholar 

  57. T. Razegh, V. Setoodeh, S. Pilban Jahromi, J. Optoelectron. Nanostruct. 2, 11 (2017)

    Google Scholar 

  58. R.H. Kodama, S.A. Makhlouf, A.E. Berkowitz, Phys. Rev. Lett. 79, 1393 (1997)

    ADS  Google Scholar 

  59. S.E. Shirsath, R.H. Kadam, A.S. Gaikwad, A. Ghasemi, A. Morisako, J. Magn. Magn. Mater. 323, 3104 (2011)

    ADS  Google Scholar 

  60. X. Cai, L. Shi, S. Zhou, J. Zhao, Y. Guo, C. Wang, J. Appl. Phys. 116, 103903 (2014)

    ADS  Google Scholar 

  61. T. Zhang, T.F. Zhou, T. Qian, X.G. Li, Phys. Rev. B. 76, 174415 (2007)

    ADS  Google Scholar 

  62. V. Setoodeh, S. Hosseini, M. Ghanaatshoar, B. Shokri, Phys. B 408, 39 (2013)

    ADS  Google Scholar 

  63. K. Karthik, G.K. Selvan, M. Kanagaraj, S. Arumugam, N.V. Jaya, J. Alloy. Compd. 509, 181 (2011)

    Google Scholar 

  64. S. Thota, J. Kumar, J. Phys. Chem. Solids 68, 1951 (2007)

    ADS  Google Scholar 

  65. J. Wesselinowa, J. Magn. Magn. Mater. 322, 234 (2010)

    ADS  Google Scholar 

  66. S. Farhadi, Z. Roostaei-Zaniyani, Polyhedron 30, 1244 (2011)

    Google Scholar 

  67. S. Mosivand, L.M.A. Monzon, K. Ackland, I. Kazeminezhad, J.M.D. Coey, J. Phys. D Appl. Phys. 47, 055001 (2014)

    ADS  Google Scholar 

  68. S. Mosivand, I. Kazeminezhad, CrystEngComm 18, 417 (2016)

    Google Scholar 

  69. S. Mosivand, I. Kazeminezhad, Mater. Res. Bull. 70, 328 (2015)

    Google Scholar 

  70. M. Kardanzadeh, I. Kazeminezhad, S. Mosivand, Ceram. Int. 44, 5652 (2018)

    Google Scholar 

  71. Y. Wu, Y. He, T. Wu et al., Mater. Lett. 61, 3174 (2007). https://doi.org/10.1016/j.matlet.2006.11.018

    Article  Google Scholar 

  72. M.N. Siddique, A. Ahmed, P. Tripathi, J. Alloys Compd. 735, 516 (2018). https://doi.org/10.1016/j.jallcom.2017.11.114

    Article  Google Scholar 

  73. A. Surca, B. Orel, B. Pihlar, P. Bukovec, J. Electroanal. Chem. 408, 83 (1996). https://doi.org/10.1016/0022-0728(96)04509-3

    Article  Google Scholar 

  74. L.G. Teoh, K.-D. Li, Mater. Trans. 53, 2135 (2012). https://doi.org/10.2320/matertrans.M2012244

    Article  Google Scholar 

  75. N.N.M. Zorkipli, N.H.M. Kaus, A.A. Mohamad, Procedia Chem. 19, 626 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  Google Scholar 

  76. M. Alagiri, S. Ponnusamy, C. Muthamizhchelvan, J. Mater. Sci. Mater. Electron. 23, 728 (2012). https://doi.org/10.1007/s10854-011-0479-6

    Article  Google Scholar 

  77. A. Vasudeo Rane, K. Kanny, V.K. Abitha, S. Thomas, Chapter 5 Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites in Synthesis of Inorganic Nanomaterials (Elsevier Ltd., Amsterdam, 2018). https://doi.org/10.1016/B978-0-08-101975-7.00005-1

    Book  Google Scholar 

  78. S. Farhadi, Z. Roostaei-Zaniyani, Polyhedron 30, 971 (2011). https://doi.org/10.1016/j.poly.2010.12.044

    Article  Google Scholar 

  79. M. Salavati-Niasari, N. Mir, F. Davar, J. Alloys Compd. 493, 163 (2010). https://doi.org/10.1016/j.jallcom.2009.11.153

    Article  Google Scholar 

  80. M. Ghosh, K. Biswas, A. Sundaresan, C.N.R. Rao, J Mater. Chem. 16, 106 (2006). https://doi.org/10.1039/b511920k

    Article  Google Scholar 

  81. Y. Ren, L. Gao, J. Am. Ceram. Soc. 93, 3560 (2010). https://doi.org/10.1111/j.1551-2916.2010.04090.x

    Article  Google Scholar 

  82. Z. Zhu, N. Wei, H. Liu, Z. He, Adv. Powder Technol. 22, 422 (2011). https://doi.org/10.1016/j.apt.2010.06.008

    Article  Google Scholar 

  83. Z. Wei, H. Qiao, H. Yang et al., J. Alloys Compd. 479, 855 (2009). https://doi.org/10.1016/j.jallcom.2009.01.064

    Article  Google Scholar 

  84. K. Yogesh Kumar, T.N. Vinuth Raj, S. Archana, S.B. Benaka Prasad, S. Olivera, H.B. Muralidhara, J. Water Process Eng. 13, 44 (2016)

    Google Scholar 

  85. Y. Zhang, M. Sivakumar, S. Yang, K. Enever, M. Ramezanianpour, Desalination 428, 116 (2018)

    Google Scholar 

  86. A. Chisvert, J.L. Benedé, A. Salvador, Anal. Chim. Acta 1034, 22 (2018)

    Google Scholar 

  87. A. Khosravanipour Mostafazadeh, M. Zolfaghari, P. Drogui, J. Water Process Eng. 14, 28 (2016)

    Google Scholar 

  88. Y. Zhu, W. Fan, T. Zhou, X. Li, Sci. Total Environ. 678, 253 (2019)

    ADS  Google Scholar 

  89. R.D. Ambashta, M. Sillanpää, J. Hazard. Mater. 180, 38 (2010)

    Google Scholar 

  90. Q. Xiaolei, P.J.J. Alvarez, L. Qilin, Water Res. 47, 3931 (2013)

    Google Scholar 

  91. T.C. Prathna, S. Kumar Sharma, M. Kennedy, Sep. Purif. Technol. 199, 260 (2018)

    Google Scholar 

  92. M. Hua, S. Zhang, B. Pan, W. Zhang, L. Lv, Q. Zhang, J. Hazard. Mater. 211–212, 317 (2012)

    Google Scholar 

  93. C. Santhosh, V. Velmurugan, G. Jacob, S. Kwan Jeong, A. Nirmala Grace, A. Bhatnagar, Chem. Eng. J. 306, 1116 (2016)

    Google Scholar 

  94. P.G. Tratnyek, R.L. Johnson, Nano Today 1, 44 (2006)

    Google Scholar 

  95. A.F. Ngomsik, A. Bee, M. Draye, G. Cote, V. Cabuil, C. R. Chim. 8, 963 (2005)

    Google Scholar 

  96. A. Vaseashta, M. Vaclavikova, S. Vaseashta, G. Gallios, P. Roy, O. Pummakarnchana, Sci. Technol. Adv. Mater. 8, 47 (2007)

    Google Scholar 

  97. Y. Wu, H. Pang, Y. Liu, X. Wang, S. Yu, D. Fu, J. Chen, X. Wang, Environ. Pollut. 246, 608 (2019)

    Google Scholar 

  98. M. Stevens, B. Batlokwa, J. Water Res. Protect. 9, 931 (2017)

    Google Scholar 

  99. J.N. Egila, B.E.N. Dauda, T. Jimoh, Afr. J. Biotech. 9(48), 8192 (2010)

    Google Scholar 

  100. L. Dambies, A. Jaworska, G. Zakrzewska-Trznadel, B. Sartowska, J. Hazard. Mater. 178, 988 (2010)

    Google Scholar 

  101. C. Gómez-Laho, F. Gaxcȋa-Herruzo, J.M. Rodríguezmaroto, J.J. Rodríguez, Water Res. 27, 985 (1993)

    Google Scholar 

  102. F.L. Becker, D. Rodríguez, M. Schwab, Procedia Mater. Sci. 1, 644 (2012)

    Google Scholar 

  103. R. Dabbagh, Z. Ashtiani Moghaddam, H. Ghafourian, Desalin. Water Treat. 57, 42 (2016). https://doi.org/10.1080/19443994.2015.1103311

    Article  Google Scholar 

  104. I.O. Santos, I.C.A. Santos, L.V. Pontual, L.P.C. Monteiro, F.B. Mainier, J. Environ. Protect. 7, 728 (2016)

    Google Scholar 

  105. M.H. Salmani, M.H. Ehrampoush, H. Eslami, B. Eftekhar, Groundw. Sustain. Dev. 11, 100425 (2020)

    Google Scholar 

  106. H. Chen, F. Xu, Z. Chen, O. Jiang, W. Gustave, X. Tang, J. Environ. Sci. 96, 186 (2020)

    Google Scholar 

  107. A.O. Salawudeen, B.S. Tawabini, A.M. Al-Shaibani, T.A. Saleh, Environ. Nanotechnol. Monit. Manage. 13, 100288 (2020)

    Google Scholar 

  108. J. Qua, X. Meng, Y. Zhang, Q. Meng, Y. Tao, Q. Hu, X. Jiang, H. You, C.A. Shoemaker, J. Hazard. Mater. 379, 120804 (2019)

    Google Scholar 

  109. G. Murithi, C.O. Onindo, E.W. Wambu, G.K. Muthakia, Bio Res. 9(2), 3613 (2014)

    Google Scholar 

  110. G. Chen, C. Wang, J. Tian, J. Liu, Q. Ma, B. Liu, X. Li, J. Water Process Eng. 35, 101223 (2020)

    Google Scholar 

  111. H. Yaacoubi, O. Zidani, M. Mouflih, M. Gourai, S. Sebti, Procedia Eng. 83, 386 (2014)

    Google Scholar 

  112. S. Islamoglu, L. Yilmaz, H.O. Ozbelge, Sep. Sci. Technol. 41, 3367 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Lorestan University for financial support.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Mosivand.

Ethics declarations

Conflict of interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garavand, K., Mosivand, S. Electro‑crystallized NiO nanoparticles for river‑water treatment applications. Appl. Phys. A 127, 73 (2021). https://doi.org/10.1007/s00339-020-04185-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04185-y

Keywords

Navigation