Applied Physics A

, 125:611 | Cite as

Methods for quantitative determination of filler weight fraction and filler dispersion degree in polymer composites: example of low-density polyethylene and NaA zeolite composite

  • F. S. Marinkovic
  • D. M. Popovic
  • J. D. JovanovicEmail author
  • B. S. Stankovic
  • B. K. Adnadjevic


Novel methods for the determination of filler weight fraction and filler dispersion degree in polymer composite have been established. The XRD and FTIR methods used for the determination of zeolite weight fraction are based on measurement of selected integral area of one of the XRD diffraction peaks and one of the FTIR absorption bands, respectively. Filler dispersion degree was determined from the calculation of weight fraction of zeolite in randomly selected points of composite sample. Powdery calibration mixtures of low-density polyethylene and NaA zeolite were prepared with the certain zeolite weight fraction ranging from 5 to 30 wt%. The XRD patterns and FTIR spectra of calibration mixtures were recorded. The effect of zeolite weight fraction on the integral area and full width on half maximum of the diffraction peaks and absorption bands of the NaA zeolite were evaluated. The composite samples in the form of plates which contains from 5 to 30 wt% of zeolite were prepared by the compression moulding technique. Weight fraction and dispersion degree of zeolite in the composite, as well as the errors for their determination, were established.



This work was partially supported by the Ministry for Science of the Republic of Serbia (Grants nos. 172015 and 171029). This research did not receive any specific Grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    M.-J. Wang, Effect of polymer–filler and filler–filler interactions on dynamic properties of filled vulcanizates. Rubber Chem. Technol. 71, 520 (1998)CrossRefGoogle Scholar
  2. 2.
    T. Glaskova, M. Zarrelli, A. Borisova, K. Timchenko, A. Aniskevich, M. Giordano, Quantitative optical analysis of filler dispersion degree in MWCNT-epoxy nanocomposite. Compos. Sci. Technol. 72, 477 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Lingaiah, R. Sadler, C. Ibeh, K. Shivakumar, A method of visualization of inorganic nanoparticles dispersion in nanocomposites. Compos. Part B 39, 196 (2008)CrossRefGoogle Scholar
  4. 4.
    F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites—a comparative study. Compos. Sci. Tehnol. 65, 2300 (2005)CrossRefGoogle Scholar
  5. 5.
    J. Biswas, H. Kim, S. Choe, P.P. Kundu, Y.-H. Park, D.S. Lee, Linear low density polyethylene (LLDPE)/zeolite microporous composite film. Macromol. Res. 11, 357 (2003)CrossRefGoogle Scholar
  6. 6.
    Z.P. Luo, J.H. Koo, Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy. Polymer 49, 1841 (2008)CrossRefGoogle Scholar
  7. 7.
    N. Yao, Z.L. Wang, Handbook of Microscopy for Nanotechnology (Kluwer Academic Publishers, New York, 2005)CrossRefGoogle Scholar
  8. 8.
    H. Notle, C. Schilde, A. Kwade, Determination of particle size distributions and the degree of dispersion in nanocomposites. Compos. Sci. Technol. 72, 948 (2012)CrossRefGoogle Scholar
  9. 9.
    P. He, J. Zheng, Acoustic dispersion and attenuation measurement using both transmitted and reflected pulses. Ultrasonics 39, 27 (2001)CrossRefGoogle Scholar
  10. 10.
    J.Z. Liang, R.K.Y. Li, Measurement of dispersion of glass beads in PP matrix. J. Reinforc. Plast. Compos. 20, 630 (2001)ADSCrossRefGoogle Scholar
  11. 11.
    S. Wang, R. Liang, B. Wang, C. Zhang, Dispersion and thermal conductivity of carbon nanotube composites. Carbon 47, 53 (2009)CrossRefGoogle Scholar
  12. 12.
    K. Masenelli-Varlot, L. Chazeau, A. Bogner, J.Y. Cavaille, The relationship between the electrical and mechanical properties of polymer-nanotube nanocomposites and their microstructure. Compos. Sci. Technol. 69, 1533 (2009)CrossRefGoogle Scholar
  13. 13.
    Yoon D, Choi J-B, Han CH-S, Kim Y-J, Baik S. The quantitative characterization of the dispersion state of single-walled carbon nanotubes using Raman spectroscopy and atomic force microscopy. Carbon 46, 1530 (2008)CrossRefGoogle Scholar
  14. 14.
    A. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978 (1939)ADSCrossRefGoogle Scholar
  15. 15.
    R. Zannetti, Application of crystallography to materials science. Annu. Yugoslav. Cent. Crystallogr. 24, 1986 (1986)Google Scholar
  16. 16.
    J. Bronic, L. Sekovanovic, A. Muzic, T. Biljan, J. Kontrec, B. Subotic, Host–guest interaction of iodine with zeolite A. Acta Chim. Slov. 53, 166 (2006)Google Scholar
  17. 17.
    E.Z.M. Tarmizi, H. Baqiah, Z.A. Talib, H.M. Kamari, Preparation and physical properties of polypyrrole/zeolite composite. Res. Phys. 11, 793 (2018)Google Scholar
  18. 18.
    A. Smith, Applied Infrared Spectroscopy (Wiley, Chichester (UK), 1979)Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • F. S. Marinkovic
    • 1
  • D. M. Popovic
    • 1
  • J. D. Jovanovic
    • 2
    Email author
  • B. S. Stankovic
    • 2
  • B. K. Adnadjevic
    • 2
  1. 1.Faculty of PhysicsUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Physical ChemistryUniversity of BelgradeBelgradeSerbia

Personalised recommendations