Skip to main content
Log in

Determination of filler content for natural filler polymer composite by thermogravimetric analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Determination of filler content by thermogravimetric (TG) analysis is commonly utilized to investigate the effectiveness of processing methods for composite materials and to quantify the dispersion of filler within the matrix. However, the existing analysis method is not capable of accurately predicting the filler content for natural fiber composites for the case where thermal degradation of the filler and matrix occurs within similar temperature ranges. In the present study, the authors have proposed a generic equation for the determination of filler content which can be utilized for any given range of thermal degradation temperatures in natural filler polymer composites. Oil palm shell unsaturated polyester composites were selected to verify the proposed equation using the TG test with the results indicating good agreement between the estimated and experimental filler contents with a maximum error on the order of 10 %. The suggested technique provides a simple, yet generic, approach to determining the filler content of green or lignocellulose-based polymer composites by TG analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dai D, Fan M. Wood fibres as reinforcements in natural fibre composites: structure, properties, processing and applications. In: Hodzic A, Shanks R, editors. natural fibre composites. Sawston p: Woodhead Publishing; 2014. p. 3–65.

    Chapter  Google Scholar 

  2. Biocomposites IfBa. European Bioplastics. 2013.

  3. Mohanty AK, Misra M, Drzal LT. Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world. J Polym Environ. 2002;10:19–26.

    Article  CAS  Google Scholar 

  4. Yang L, Thomason JL, Zhu W. The influence of thermo-oxidative degradation on the measured interface strength of glass fibre-polypropylene. Compos Part A Appl Sci Manuf. 2011;42:1293–300.

    Article  CAS  Google Scholar 

  5. Nabinejad O, Sujan D, Rahman ME, Davies IJ. Effect of oil palm shell powder on the mechanical performance and thermal stability of polyester composites. Mater Des. 2015;65:823–30.

    Article  CAS  Google Scholar 

  6. Fukatsu K. Thermal degradation behaviour of aromatic polyamide fiber blended with cotton fiber. Polym Degrad Stab. 2002;75:479–84.

    Article  CAS  Google Scholar 

  7. Wilkie CA. TGA/FTIR: an extremely useful technique for studying polymer degradation. Polym Degrad Stab. 1999;66:301–6.

    Article  CAS  Google Scholar 

  8. Nistor M-T, Vasile C. Influence of the nanoparticle type on the thermal decomposition of the green starch/poly(vinyl alcohol)/montmorillonite nanocomposites. J Therm Anal Calorim. 2012;111:1903–19.

    Article  Google Scholar 

  9. Jang BN, Wilkie CA. The effect of clay on the thermal degradation of polyamide 6 in polyamide 6/clay nanocomposites. Polymer. 2005;46:3264–74.

    Article  CAS  Google Scholar 

  10. Fuad MYA, Zaini MJ, Jamaludin M. Filler-content determination of wood-based composites by thermogravimetric analysis. Polym Test. 1994;13:15–24.

    Article  CAS  Google Scholar 

  11. Fuad MYA, Zaini MJ, Jamaludin M, Ishak ZAM, Omar AKM. Determination of filler content in rice husk ash and wood-based composites by thermogravimetric analysis. J Appl Polym Sci. 1994;51:1875–82.

    Article  CAS  Google Scholar 

  12. Nabinejad O, Sujan D, Rahman M, Reddy M, Liew WY, Davies IJ. The effect of alkali treatment of OPKS filler on mechanical property of polyester-composite. Advanced Materials Research: Transaction of Technologies Publishing. 2014; pp. 86–90.

  13. Monteiro SN, Calado V, Rodriguez RJS, Margem FM. Thermogravimetric behavior of natural fibers reinforced polymer composites—an overview. Mater Sci Eng, A. 2012;557:17–28.

    Article  CAS  Google Scholar 

  14. De Rosa IM, Kenny JM, Puglia D, Santulli C, Sarasini F. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol. 2010;70:116–22.

    Article  Google Scholar 

  15. Satyanarayana KG, Guimarães JL, Wypych F. Studies on lignocellulosic fibers of Brazil. Part I: source, production, morphology, properties and applications. Compos Part A Appl Sci Manuf. 2007;38:1694–709.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. E. Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nabinejad, O., Sujan, D., Rahman, M.E. et al. Determination of filler content for natural filler polymer composite by thermogravimetric analysis. J Therm Anal Calorim 122, 227–233 (2015). https://doi.org/10.1007/s10973-015-4681-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10973-015-4681-2

Keywords

Navigation