Skip to main content

Influence of Nanofillers Concentration on Physical and Mechanical Characteristics of Their Polymer Composites

  • Conference paper
  • First Online:
Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 246))

Abstract

The influence of the concentration of nanofillers (multi-wall carbon nanotubes and pyrogenic silica A-300) on the structural, electrophysical, and mechanical characteristics of polymer composites was studied by transmission electron microscopy, X-ray diffraction, conductivity, stretching, and compression. The high-pressure polyethylene (PE), isostatic polypropylene (PP), and polytetrafluoroethylene (PTFE) were selected as polymer matrices. PE and PP compositions with multi-walled carbon nanotubes (MWCNT) were obtained by mixing in a melt or hot pressing polymer powders with MWCNTs planted on their surface from pre-homogenized stable dispersions. The composition of PTFE with MWCNTs was obtained, by mixing its stable dispersion with PTFE aqueous suspension. It is shown, that the introduction of a small concentration of nanofillers in polymer matrices changes the structural characteristics of composites, namely the degree of crystallinity and the size of X-ray coherent scattering blocks (XRCSB). The dependence of electrical conductivity on MWCNTs concentration is percolation. The critical concentration at which a continuous volumetric current grid is formed depends on the degree of homogeneity of the MWCNTs distribution in the matrix and can be a parameter that characterizes it. The strength characteristics of the studied composites are non-monotonically dependent on the filler concentration but linearly depend on the size of the coherent X-ray scattering blocks. These dependencies have two sections the inflection point for which corresponds to the critical concentration of the percolation transition. This confirms the theoretical calculations of various approximations that quantitatively the response of the matrix is proportional to the surface area of the interface.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920. https://doi.org/10.1016/j.polymer.2007.06.046

    Article  Google Scholar 

  2. Bauhofer W, Kovacs JZ (2009) A review and analysis of electrical percolation in carbon nanotube polymer composites. Comp Sci Technol 69(10):1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018

    Article  Google Scholar 

  3. Sementsov YI, Melezhyk AV, Pyatkovsky ML, Yanchenko VV, Gavrilyuk NA et al (2007) Hydrogen materials science and chemistry of carbon nanomaterials. In: Veziroglu TN, Zaginaichenko SYu, Schur DV, Baranowski B, Shpak AP, Skorokhod VV, Kale A (eds) NATO security through science series a: chemistry and biology. Springer, Dordrecht, pp 757–763. https://doi.org/10.1007/978-1-4020-5514-0_95

  4. Zare Y (2016) Study of nanoparticles aggregation/agglomeration in polymer particulate nanocomposites by mechanical properties. Compos Part A 84:158–164. https://doi.org/10.1016/j.compositesa.2016.01.020

  5. Malagù M, Goudarzi M, Lyulin A, Benvenuti E, Simone A (2017) Diameter-dependent elastic properties of carbon nanotube-polymer composites: Emergence of size effects from atomistic-scale simulations. Compos Part B 131:260–281. https://doi.org/10.1016/j.compositesb.2017.07.029

  6. Cen-Puca M, Oliva-Avilés AI, Avilés F (2018) Thermoresistive mechanisms of carbon nanotube/polymer composites. Physica E 95:41–50. https://doi.org/10.1016/j.physe.2017.09.001

    Article  ADS  Google Scholar 

  7. Sementsov YI, Makhno SN, Zhuravsky SV, Kartel MT (2017) Properties of polyethylene–carbon nanotubes composites. Chem Phys Technol Surface 8(2):107–119. https://doi.org/10.15407/hftp08.02.107

  8. Sementsov YI, Kartel NT (2019) The influence of small concentrations of carbon nanotubes on the structuralization in matrices of different nature. Chem Phys Technol Surface 10(2):174–189. https://doi.org/10.15407/hftp10.02.174

  9. Lozovyi F, Ivanenko K, Nedilko S, Revo S, Hamamda S (2016) Thermal analysis of polyethylene + X% carbon nanotubes. Nanoscale Res Lett 11(1):97. https://doi.org/10.1186/s11671-016-1315-y

  10. Avramenko TG, Khutoryanskaya NV, Naumenko SM, Ivanenko KO, Hamamda S, Revo SL (2019) Effect of carbon nanofillers on processes of structural relaxation in the polymer matrixes. Springer Proc Phys 221:293–305. https://doi.org/10.1007/978-3-030-17759-1_20

    Article  Google Scholar 

  11. Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680. https://doi.org/10.1038/381678a0

    Article  ADS  Google Scholar 

  12. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube-polymer interfacial strength. Appl Phys Lett 82(23):4140–4142. https://doi.org/10.1063/1.1579568

    Article  ADS  Google Scholar 

  13. Melezhik AV, Yanchenko VV, Sementsov YI (2007) in Nanocarbon materials. Hydrogen materials science and chemistry of carbon nanomaterials. In: Veziroglu TN, Zaginaichenko SY, Schur DV, Baranowski B, Shpak AP, Skorokhod VV, Kale A (eds) NATO security through science series A: chemistry and biology. Springer, Dordrecht, pp 529–537. https://doi.org/10.1007/978-1-4020-5514-0_67

  14. Melezhik AV, Sementsov YI, Yanchenko VV (2005) Synthesis of fine carbon nano-tubes on coprecipitated metal oxide catalysts. Russ J Appl Chem 78(6):917–923. https://doi.org/10.1007/s11167-005-0420-y

    Article  Google Scholar 

  15. Pinchuk-Rugal TM, Dmytrenko OP, Kulish MP, Grabovskyy YY, Nychyporenko OS, Sementsov YI, Shlapatskaya VV (2015) Radiation damages of isotactic polypropylene nanocomposites with multi-walled carbon nanotubes. Probl Atomic Sci Technol 96(2):10–17

    Google Scholar 

  16. Nychyporenko OS, Dmytrenko OP, Kulish MP, Pinchuk-Rugal TM, Grabovskyy YY, Zabolotnyy AM, Strelchuk VV, Nikolenko AS, Sementsov YI (2015) Defects of structure of nanocomposites of polytetrafluorethylene with multiwalled carbon nanotube. Nanosyst Nanomater Nanotechnol 13(4):673–686

    Google Scholar 

  17. Sementsov YI, Piatkovsky ML, Gavriliuk NA, Prikhodko GP, Kartel MT, Grabovsky YE (2009) Nanocomposites are fluoroplast 4/carbon nanotubes. Production, structure and mechanical properties. Chem Ind Ukr 5:59–64 [in Uktainian]

    Google Scholar 

  18. Minus ML, Chae HG, Kumar S (2012) Polyethylene crystallization nucleated by carbon nanotubes under shear. ACS Appl Mater Interfaces 4(1):326–330. https://doi.org/10.1021/am2013757

    Article  Google Scholar 

  19. McNally T, Potschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46(19):8222–8232. https://doi.org/10.1016/j.polymer.2005.06.094

    Article  Google Scholar 

  20. Novak DS, Bereznenko NM, Shostak TS et al (2011) Strumipriva on the nanocomposites of polyethylene. Rock destruction and metal-working tools—technology of manufacture and applications (Collection of scientific papers. The ISM NAS of Ukraine.) 14:394. (in Russian)

    Google Scholar 

  21. Lisunova MO, Mamunya YP, Lebovka NI, Melezhyk AV (2007) Percolation behaviour of ultrahigh molecular weight polyethylene/multi-walled carbon nanotubes composites. Eur Polym J 43:949–958. https://doi.org/10.1016/j.eurpolymj.2006.12.015

    Article  Google Scholar 

  22. Kirkpatrick S (1973) Percolation and conduction. Rev Modern Phys 45:574–588. https://doi.org/10.1103/RevModPhys.45.574

    Article  ADS  Google Scholar 

  23. Efros AL (1982) Physics and geometry of disorder. Nauka, Moscow [in Russian]

    Google Scholar 

  24. Mamunya YP (2000) Electrical and thermal conductivity of polymer composites with dispersed fillers. Ukr Chem J 66(3):55 [in Ukrainian]

    Google Scholar 

  25. Quivy A, Deltour R, Jasen AG et al (1989) Transport phenomena in polymer-graphite composite materials. Phys Rev B 39(2):1026–1030. https://doi.org/10.1103/PhysRevB.39.1026

    Article  ADS  Google Scholar 

  26. Balberg I, Binenbaum N, Bozovsky S (1983) Anisotropic percolation in carbon black-polyvinylchloride composites. Sol St Comm 47(12):989–992. https://doi.org/10.1016/0038-1098(83)90984-5

    Article  ADS  Google Scholar 

  27. Sementsov YI, Revo SL, Ivanenko KO (2016) Exfoliated graphite. Kyiv, Interservice, pp 78–90. (in Ukrainian)

    Google Scholar 

  28. Encyclopedia of Polymers (1977) Ed. VA Kabanova, vol 3. Soviet Encyclopedia, Moscow. [in Russian]

    Google Scholar 

  29. Halpin JC, Kardos JL (1976) The Halpin-Tsai equations: a review. Polym Eng Sci 16(5):344–352. https://onlinelibrary.wiley.com/doi/pdf/10.1002/pen.760160512

  30. Haque A, Ramasetty A (2005) Theoretical study of stress transfer in carbon nanotubes reinforced polymer matrix composites. Compos Struct 71(1):68–77. https://doi.org/10.1016/j.compstruct.2004.09.029

    Article  Google Scholar 

  31. Kartel M, Sementsov Y, Mahno S, Trachevskiy V, Bo W (2016) Polymer composites filled with multiwall carbon nanotubes. Univ J Mater Sci 4(2):23–31. https://doi.org/10.13189/ujms.2016.040202

    Article  Google Scholar 

  32. Patterson A (1939) The scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982. https://doi.org/10.1103/PhysRev.56.978

    Article  ADS  MATH  Google Scholar 

  33. Terets MI, Demianenko EM, Zhuravsky SV, Chernyuk OA et al (2019) Quantum chemical study on the interaction of carbon nanotube with polyethylene and polypropylene oligomers. Chem Phys Technol Surface 10(1):75–86. https://doi.org/10.15407/hftp10.01.075

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Revo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanenko, K., Ushakova, L.M., Avramenko, T., Revo, S., Kartel, M.T., Sementsov, Y.I. (2021). Influence of Nanofillers Concentration on Physical and Mechanical Characteristics of Their Polymer Composites. In: Fesenko, O., Yatsenko, L. (eds) Nanomaterials and Nanocomposites, Nanostructure Surfaces, and Their Applications . Springer Proceedings in Physics, vol 246. Springer, Cham. https://doi.org/10.1007/978-3-030-51905-6_46

Download citation

Publish with us

Policies and ethics