Skip to main content
Log in

Determination of magnetic properties of a Ni/NiO/Ni multilayer: an ANFIS-based predictive technique

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, Ni/NiO/Ni multilayers are deposited on glass substrates using radio frequency magnetron sputtering, where the structural and morphological properties are analyzed using X-ray diffraction besides scanning electron microscopy techniques. The associated magnetic hysteresis loops are obtained by vibrating sample magnetometer for temperatures ranging from − 100 to 300 °C. Hence, the parameters α, β, Bmax, HC, and Br defining a hysteresis loop are determined at each temperature using Preisach model for the first two parameters, while the remaining ones are deduced experimentally. The set of these parameters are introduced within the training data set in the context of an ANFIS-based approach to predict the hysteresis loop of a Ni/NiO/Ni multilayer for any temperature below the Curie temperature. The comparison conducted between theoretical and experimental results showed a good agreement. This work provided more insights regarding the consolidation of experimental characterization with the development of soft computing-based frameworks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E.P. Wohlfarth, Handbook of Ferromagnetic Materials, vol 2 (Elsevier, Amsterdam, 1980)

    Google Scholar 

  2. A. Bendjerad, A. Benhaya, S. Boukhtache, M. Zergoug, K. Benyahia, Modeling of magnetic properties (Cr/NiO/Ni) based multi-layers deposited by magnetron sputtering using Preisach model. Mater. Devices 2(1), 310–314 (2017)

    Google Scholar 

  3. S.S. Grabchikov, A.V. Trukhanov, S.V. Trukhanov, I.S. Kazakevich, A.A. Solobay, V.T. Erofeenko, N.A. Vasilenkov, O.S. Volkova, A. Shakin, Effectiveness of the magnetostatic shielding by the cylindrical shells. J. Magn. Magn. Mater. 398, 49–53 (2016)

    Article  ADS  Google Scholar 

  4. A.V. Trukhanov, S.S. Grabchikov, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, E.L. Trukhanova, AC and DC-shielding properties for the Ni80Fe20/Cu film structures. J. Magn. Magn. Mater. 443, 142–148 (2017)

    Article  ADS  Google Scholar 

  5. G. Béranger, F. Duffaut, J. Morlet, J.F. Tiers, The Iron-Nickel Alloys: A Hundred Years After the Discovery of Invar (Lavoisier Publisher, Secaucus, 1996)

    Google Scholar 

  6. V. Skumryev, S. Stoyanov, Y. Zhang, G. Hadjipanayis, D. Givord, J. Nogues, Beating the superparamagnetic limit with exchange bias. Nature 423, 850–853 (2003)

    Article  ADS  Google Scholar 

  7. M.H. Kryder, Magnetic thin films for data storage. Thin solid films 216(1), 174–180 (1992)

    Article  ADS  Google Scholar 

  8. T. Katase, H. Hiramatsu, T. Kamiya, H. Hosono, Thin film growth by pulsed laserdeposition and properties of 122-type iron-based superconductor AE(Fe1–x Cox)2AS2(AE = alkaline earth). Supercond. Sci. Technol. 25(8), 084015(1–12) (2012)

    Article  Google Scholar 

  9. Y. Cao, K. Xu, W. Jiang, T. Droubay, P. Ramuhalli, D. Edwards, B.R. Johnson, J.M. Cloy, Hysteresis in single and polycrystalline iron thin films: major and minor loops first order reversal curves and Preisach modeling. J. Magn. Magn. Mater. 395, 361–375 (2015)

    Article  ADS  Google Scholar 

  10. A. Iljinas, J. Dudonis, R. Brucas, A. Meškauskas, Thin ferromagnetic films deposition by facing target sputtering method. Nonlinear Anal. Model. Control 10(1), 57–64 (2005)

    MATH  Google Scholar 

  11. G.F. Huang, W.Q. Huang, L.L. Wang, B.S. Zou, J.H. Zhang, Studies on the Fe–P film plating from a chemical bath: deposition mechanism and parameter effects. Int. J. Electrochem. Sci. 3, 145–153 (2008)

    Google Scholar 

  12. W. Qing, W. Tai-Hong, L. Cheng-Lu, Vacuum electron-beam evaporation of Fe nanocrystals on Si3N4 buffer layer for carbon nanotube growth. Chin. Phys. Lett. 20(2), 301–303 (2003)

    Article  ADS  Google Scholar 

  13. R. Fleurier, Résonance Ferromagnétique et Structure de Nanoparticules Bimétalliques à Base de Fer, PhD Dissertation, University of Orleans, France (2006)

  14. D.I. Tishkevich, S.S. Grabchikov, L.S. Tsybulskaya, V.S. Shendyukov, S.S. Perevoznikov, S.V. Trukhanov, E.L. Trukhanova, A.V. Trukhanov, D.A. Vinnik, Electrochemical deposition regimes and critical influence of organic additives on the structure of Bi films. J. Alloys Compd. 735, 1943–1948 (2018)

    Article  Google Scholar 

  15. D.I. Tishkevich, S.S. Grabchikov, S.B. Lastovskii, S.V. Trukhanov, T.I. Zubar, D.S. Vasin, A.V. Trukhanov, Correlation of the synthesis conditions and microstructure for Bi-based electron shields production. J. Alloy. Compd. 749, 1036–1042 (2018)

    Article  Google Scholar 

  16. R. Rameshan, V. Vonk, D. Franz, J. Drnec, S. Penner, A. Garhofer, F. Mittendorfer, A. Stierle, B. Klötzer, Role of precursor carbides for graphene growth on Ni(111). Sci. Rep. 8, 2662(1–13) (2018)

    Article  Google Scholar 

  17. B. Lü, Z.-F. Hu, X.-H. Wang, B.-S. Xu, Thermal stability of electrodeposited nanocrystalline nickel assisted by flexible friction. Trans. Nonferrous Met. Soc. China 25(10), 3297–3304 (2015)

    Article  Google Scholar 

  18. C.-L. Ban, X. Shao, H. Chen, Effect of mechanical attrition on microstructure and property of electroplated Ni coating. Trans. Nonferrous Met. Soc. China 22(8), 1989–1994 (2012)

    Article  Google Scholar 

  19. T.I. Zubar, S.A. Sharko, D.I. Tishkevich, N.N. Kovaleva, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, L.V. Panina, S.V. Trukhanov, A.V. Trukhanov, Anomalies in Ni–Fe nanogranular films growth. J. Alloy. Compd. 748, 970–978 (2018)

    Article  Google Scholar 

  20. T.I. Zubar, L.V. Panina, N.N. Kovaleva, S.A. Sharko, D.I. Tishkevich, D.A. Vinnik, S.A. Gudkova, E.L. Trukhanova, E.A. Trofimov, S.A. Chizhik, S.V. Trukhanov, A.V. Trukhanov, Anomalies in growth of electrodeposited Ni–Fe nanogranular films. CrystEngComm 20(16), 2306–2315 (2018)

    Article  Google Scholar 

  21. M.B.A. Tuan, Caractérisation et Modélisation du Comportement des Matériaux Magnétiques Doux Sous Contrainte Thermique, PhD DISSERTATION, Claude Bernard Lyon I University (2011)

  22. O. Messal, Caractérisation et Modélisation du Comportement Thermomagnétique d’alliages FeNi pour le Prototypage Virtuel, PhD Dissertation, Claude Bernard Lyon I University (2013)

  23. S.V. Trukhanov, A.V. Trukhanov, H. Szymczak, C.E. Botez, A. Adair, Magneto transport properties and mechanism of the A-site ordering in the Nd–Ba optimal-doped manganites. J. Low Temp. Phys. 149(3–4), 185–199 (2007)

    Article  ADS  Google Scholar 

  24. S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85. J. Exp. Theor. Phys. 111(2), 209–214 (2010)

    Article  ADS  Google Scholar 

  25. V.D. Doroshev, V.A. Borodin, V.I. Kamenev, A.S. Mazur, T.N. Tarasenko, A.I. Tovstolytkin, S.V. Trukhanov, Self-doped lanthanum manganites as a phase-separated system: Transformation of magnetic, resonance, and transport properties with doping and hydrostatic compression. J. Appl. Phys. 104, 093909 (2008)

    Article  ADS  Google Scholar 

  26. A. Trukhanov, L. Panina, S. Trukhanov, V. Turchenko, M. Salem, Evolution of structure and physical properties in Al-substituted Ba-hexaferrites. Chin. Phys. B 25, 016102 (2016)

    Article  Google Scholar 

  27. F. Preisach, Über die magnetische nachwirkung. Zeitschrift für Physik 94(5–6), 277–302 (1935)

    Article  ADS  Google Scholar 

  28. A. Bendjerad, S. Boukhtache, A. Benhaya, A. Lahmar, M. Zergoug, D. Luneau, RF magnetron sputtering deposition of NiO/Ni bilayer and approach of the Magnetic behavior using the Preisach model. J. Magn. Magn. Mater. 428, 377–381 (2017)

    Article  ADS  Google Scholar 

  29. A. Bendjerad, S. Boukhtache, A. Benhaya, D. Luneau, S.E. Abaidia, K. Benyahia, Modeling of magnetic properties of iron thin films deposited by RF magnetron sputtering using Preisach model. Serbian J. Electr. Eng. 13(2), 229–238 (2016)

    Article  Google Scholar 

  30. G. Bertotti, M. Pasquale, Physical interpretation of induction and frequency dependence of power losses in soft magnetic materials. IEEE Trans. Magn. 28(5), 2787–2789 (1992)

    Article  ADS  Google Scholar 

  31. G. Bertotti, Dynamic generalization of the scalar Preisach model of hysteresis. IEEE Trans. Magn. 28(5), 2599–2601 (1992)

    Article  ADS  Google Scholar 

  32. A.K. Lebouc, Matériaux Magnétique en Génie Électrique 2, Hermès Science Edition, Paris, France (2006)

  33. F. Djeffal, N. Lakhdar, An improved analog electrical performance of submicron Dual-Material gate (DM) GaAs-MESFETs using multi-objective computation. J. Comput. Electron. 12, 29–35 (2013)

    Article  Google Scholar 

  34. H. Ferhati, F. Djeffal, Role of optimized grooves surface-textured front glass in improving TiO2 thin film UV photodetector performance. IEEE Sens. J. 16, 5618–5624 (2016)

    Article  ADS  Google Scholar 

  35. F. Djeffal, S. Guessasma, A. Benhaya, M. Chahdi, An analytical approach based on neural computation to estimate the lifetime of deep submicron MOSFETs. Semicond. Sci. Technol. 20(2), 158–164 (2005)

    Article  ADS  Google Scholar 

  36. J.S.R. Jang, ANFIS: adaptive-network-based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  37. S. Kar, S. Das, P.K. Ghosh, Applications of neuro fuzzy systems: a brief review and future outline. Appl. Soft Comput. 15, 243–259 (2014)

    Article  Google Scholar 

  38. Z.J. Viharos, K.B. Kis, Survey on neuro-fuzzy systems and their applications in technical diagnostics and measurement. Measurement 67, 126–136 (2015)

    Article  Google Scholar 

  39. E. Chebaki, F. Djeffal, T. Bentrcia, ANFIS-based approach to predict the degradation-related ageing of Junctionless GAA MOSFET. Mater. Today Proc. 5(8), 15949–15958 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Djeffal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bendjerad, A., Benhaya, A., Bentrcia, T. et al. Determination of magnetic properties of a Ni/NiO/Ni multilayer: an ANFIS-based predictive technique. Appl. Phys. A 125, 56 (2019). https://doi.org/10.1007/s00339-018-2349-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2349-z

Navigation