Skip to main content
Log in

Effect of metal/metal oxide coupling on the photoluminescence properties of ZnO microrods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Despite its unique properties, zinc oxide (ZnO) particles have limited usage in optoelectronic devices and biochemical sensors due to its relatively poor ultraviolet (UV) emission. In this research, the localized surface plasmon resonance (LSPR) effect of metal nanoparticles such as silver (Ag), aluminium (Al), copper (Cu) and iron (Fe) that were coupled with ZnO microrods was studied. The metal coupled ZnO microrods were synthesized by solution impregnated method. The metal nanoparticles were clearly observed deposited onto the surface of ZnO microrods using transmission electron microscope (TEM) and energy dispersive X-ray (EDX) mapping. The room temperature photoluminescence (RTPL) analysis of ZnO microrods coupled with Al, Ag, Fe showed remarkable improvement of UV emission and quenching of defect related emission. The intensity ratio (Iuv/Ivis) of ZnO microrods was 1.6 but was enhanced to 26.1, 4.4, and 4.0 by coupling of Al, Ag and Fe, respectively. However, when Cu was embedded onto ZnO microrods, the Iuv/Ivis of ZnO microrods was suppressed to 0.1. The photoluminescent mechanism of Al, Ag and Fe–ZnO particles was attributed to LSPR effect. In contrary, deposition of Cu onto ZnO microrods induced energy level in bandgap of ZnO, producing the visible light emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J. Jana, M. Ganguly, T. Pal, RSC Adv. 6, 86174 (2016)

    Google Scholar 

  2. M.L. Juan, M. Righini, R. Quidant, Nat. Photonics. 5, 349 (2011)

    ADS  Google Scholar 

  3. M. Norek, G. Łuka, M. Włodarski, Appl. Surf. Sci. 384, 18 (2016)

    ADS  Google Scholar 

  4. C. Caucheteur, T. Guo, J. Albert, Anal. Bioanal. Chem. 407, 3883 (2015)

    Google Scholar 

  5. M. Bashevoy, F. Jonsson, A. Krasavin, N. Zheludev, Y. Chen, M. Stockman, Nano Lett. 6, 1113 (2006)

    ADS  Google Scholar 

  6. N. Venugopal, G. Kaur, A. Mitra, Appl. Surf. Sci. 320, 30 (2014)

    ADS  Google Scholar 

  7. K. Catchpole, A. Polman, Appl. Phys. Lett. 93, 191113 (2008)

    ADS  Google Scholar 

  8. B. Liedberg, C. Nylander, I. Lundström, Biosens. Bioelectron. 10, 1 (1995)

    Google Scholar 

  9. J. Homola, Chem. Rev. 108, 462 (2008)

    Google Scholar 

  10. J. Cao, T. Sun, K.T. Grattan, Sens. Actuator B Chem. 195, 332 (2014)

    Google Scholar 

  11. H.H. Nguyen, J. Park, S. Kang, M. Kim, Sensor 15, 10481 (2015)

    Google Scholar 

  12. A.J. Haes, S. Zou, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem B. 108, 109 (2004)

    Google Scholar 

  13. Y.-H. Su, Y.-F. Ke, S.-L. Cai, Q.-Y. Yao, Light. Sci. Appl. 1, e14 (2012)

    Google Scholar 

  14. D. Derkacs, S. Lim, P. Matheu, W. Mar, E. Yu, Appl. Phys. Lett. 89, 093103 (2006)

    ADS  Google Scholar 

  15. L. Qiao, D. Wang, L. Zuo, Y. Ye, J. Qian, H. Chen et al., Appl. Energy 88, 848 (2011)

    Google Scholar 

  16. J. Miao, W. Hu, Y. Jing, W. Luo, L. Liao, A. Pan et al., Small. 11, 2392 (2015)

    Google Scholar 

  17. Z.L. Wang, J. Phys. Condens. Matt. 16, R829 (2004)

    ADS  Google Scholar 

  18. A. Janotti, C.G. Van de Walle, Rep. Prog. Phys. 72, 126501 (2009)

    ADS  Google Scholar 

  19. A. Djurišić, A. Ng, X. Chen, Prog. Quant. Electron. 34, 191 (2010)

    ADS  Google Scholar 

  20. A.B. Djurišić, Y.H. Leung, Small. 2, 944 (2006)

    Google Scholar 

  21. J. Bao, M.A. Zimmler, F. Capasso, X. Wang, Z. Ren, Nano Lett. 6, 1719 (2006)

    ADS  Google Scholar 

  22. Y.Q. Bie, Z.M. Liao, P.W. Wang, Y.B. Zhou, X.B. Han, Y. Ye et al., Adv. Mater. 22, 4284 (2010)

    Google Scholar 

  23. H. Liang, S. Yu, H. Yang, Appl. Phys. Lett. 96, 101116 (2010)

    ADS  Google Scholar 

  24. J. Law, J. Thong, Appl. Phys. Lett. 88, 133114 (2006)

    ADS  Google Scholar 

  25. Y. Jin, J. Wang, B. Sun, J.C. Blakesley, N.C. Greenham, Nano Lett. 8, 1649 (2008)

    ADS  Google Scholar 

  26. A.K. Srivastava, Oxide nanostructures: growth, microstructures, and properties (CRC Press, Boca Raton, 2014)

    Google Scholar 

  27. X. Ma, P. Chen, D. Li, Y. Zhang, D. Yang, Appl. Phys. Lett. 91, 021105 (2007)

    ADS  Google Scholar 

  28. A. Djurišić, Y. Leung, K. Tam, Y. Hsu, L. Ding, W. Ge et al., Nanotechnology. 18, 095702 (2007)

    ADS  Google Scholar 

  29. C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    ADS  Google Scholar 

  30. S. Iwan, V. Fauzia, A. Umar, X. Sun, AIP Conf. Proc. 020031 (2016)

  31. F. Han, S. Yang, W. Jing, K. Jiang, Z. Jiang, H. Liu et al., Opt. Express 22, 11436 (2014)

    ADS  Google Scholar 

  32. M.T. Thein, S.-Y. Pung, A. Aziz, M. Itoh, J. Exp. Nanosci. 10, 1068 (2015)

    Google Scholar 

  33. M.-K. Lee, T.G. Kim, W. Kim, Y.-M. Sung, J. Phys. Chem. C. 112, 10079 (2008)

    Google Scholar 

  34. M.T. Thein, S.-Y. Pung, A. Aziz, M. Itoh, J. Taiwan. Inst. Chem. E. 61, 156 (2016)

    Google Scholar 

  35. L. Wang, J. Wang, S. Zhang, Y. Sun, X. Zhu, Y. Cao et al., Anal. Chim. Acta 653, 109 (2009)

    Google Scholar 

  36. K. Liu, R. Chen, G. Xing, T. Wu, H. Sun, Appl. Phys. Lett. 96, 023111 (2010)

    ADS  Google Scholar 

  37. C. Jin, H. Kim, H.-Y. Ryu, H.W. Kim, C. Lee, J. Phys. Chem. C. 115, 8513 (2011)

    Google Scholar 

  38. L. Shi, Y. Xu, S. Hark, Y. Liu, S. Wang, L.-M. Peng et al., Nano Lett. 7, 3559 (2007)

    ADS  Google Scholar 

  39. P. Shimpi, P.-X. Gao, D.G. Goberman, Y. Ding, Nanotechnology. 20, 125608 (2009)

    ADS  Google Scholar 

  40. J. Richters, T. Voss, D. Kim, R. Scholz, M. Zacharias, Nanotechnology. 19, 305202 (2008)

    Google Scholar 

  41. C. Shan, Z. Liu, S. Hark, Appl. Phys, Lett. 92, 073103 (2008)

    ADS  Google Scholar 

  42. A. Dev, R. Niepelt, J. Richters, C. Ronning, T. Voss, Nanotechnology. 21, 065709 (2010)

    ADS  Google Scholar 

  43. A. Dev, J. Richters, J. Sartor, H. Kalt, J. Gutowski, T. Voss, Appl. Phys. Lett. 98, 131111 (2011)

    ADS  Google Scholar 

  44. S.N.Q.A.A. Aziz, S.-Y. Pung, Z. Lockman, Appl. Phys. A. 116, 1801 (2014)

    ADS  Google Scholar 

  45. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, Nat. Mater. 3, 601 (2004)

    ADS  Google Scholar 

  46. X. Gu, T. Qiu, W. Zhang, P.K. Chu, Nanoscale. Res. Lett. 6, 199 (2011)

    ADS  Google Scholar 

  47. J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin et al., Nanoscale. 7, 3396 (2015)

    ADS  Google Scholar 

  48. B. Sarma, B.K. Sarma, Appl. Surf. Sci. 410, 557 (2017)

    ADS  Google Scholar 

  49. M. Sun, Z. Xu, M. Yin, Q. Lin, L. Lu, X. Xue et al., Nanoscale. 8, 8924 (2016)

    ADS  Google Scholar 

  50. H. Lu, X. Xu, L. Lu, M. Gong, Y. Liu, J. Phys. Condens. Matt. 20, 472202 (2008)

    ADS  Google Scholar 

  51. Y. Harada, I. Tanahashi, N. Ohno, J. Lumin. 129, 1759 (2009)

    Google Scholar 

  52. X.D. Zhou, X.H. Xiao, J.X. Xu, G.X. Cai, F. Ren, C.Z. Jiang, EPL 93, 57009 (2011)

    ADS  Google Scholar 

  53. P. Cheng, D. Li, D. Yang, Opt. Express 16, 8896 (2008)

    ADS  Google Scholar 

  54. P. Cheng, D. Li, X. Li, T. Liu, D. Yang, J. Appl. Phys. 106, 063120 (2009)

    ADS  Google Scholar 

  55. J.B. You, X.W. Zhang, Y.M. Fan, Z.G. Yin, P.F. Cai, N.F. Chen, J. Phys. D. Appl. Phys. 41, 205101 (2008)

    ADS  Google Scholar 

  56. T.-Y. Chiang, C.-L. Dai, Nanoscale. Res. Lett. 7, 263 (2012)

    ADS  Google Scholar 

  57. Y. Yan, Y. Zeng, Y. Wu, Y. Zhao, L. Ji, Y. Jiang et al., Opt. Express 22, 23552 (2014)

    ADS  Google Scholar 

  58. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Laser. Photonics. Rev. 4, 795 (2010)

    ADS  Google Scholar 

  59. K. Aslan, C.D. Geddes, Anal. Chem. 81, 6913 (2009)

    Google Scholar 

  60. R.S. Zeferino, M.B. Flores, U. Pal, J. Appl. Phys. 109, 014308 (2011)

    ADS  Google Scholar 

  61. D. Lin, H. Wu, R. Zhang, W. Pan, Chem. Mater. 21, 3479 (2009)

    Google Scholar 

  62. P.d.S. Erica, C. Michel, J.d.S. Gilvan, B.d.A. Larissa, L. Paulo Noronha Filho, D. Steven Frederick et al., Mater. Sci. Appl. (2013)

  63. X. Zi-qiang, D. Hong, L. Yan, C. Hang, Mater. Sci. Semiconductor. Proc. 9, 132 (2006)

    Google Scholar 

  64. Q. Hou, F. Meng, J. Sun, Nanoscale. Res. Lett. 8, 144 (2013)

    ADS  Google Scholar 

  65. M.M. Ba-Abbad, A.A.H. Kadhum, A.B. Mohamad, M.S. Takriff, K. Sopian, Chemosphere. 91, 1604 (2013)

    ADS  Google Scholar 

  66. Z. Yang, W. Zhong, C. Au, X. Du, H. Song, X. Qi et al., J. Phys. Chem. C. 113, 21269 (2009)

    Google Scholar 

  67. M. Mahanti, D. Basak, J. Lumin. 145, 19 (2014)

    Google Scholar 

  68. S. Pung, C. Ong, K.M. Isha, M. Othman, Sains. Malays. 43, 273 (2014)

    Google Scholar 

  69. P. Gangopadhyay, R. Kesavamoorthy, S. Bera, P. Magudapathy, K.G.M. Nair, B.K. Panigrahi et al., Phys. Rev. Lett. 94, 047403 (2005)

    ADS  Google Scholar 

  70. J. Gangwar, B.K. Gupta, P. Kumar, S.K. Tripathi, A.K. Srivastava, Dalton. T. 43, 17034 (2014)

    Google Scholar 

  71. S. Saha, A. Bhunia, J. Phys. Sci. 17, 191 (2013)

    Google Scholar 

  72. X. Zhao, P. Wang, Z. Yan, N. Ren, Opt. Mater. 42, 544 (2015)

    ADS  Google Scholar 

  73. X. Zhou, X. Xiao, J. Xu, G. Cai, F. Ren, C. Jiang, EPL 93, 57009 (2011)

    ADS  Google Scholar 

  74. U. Kazuyuki, S. Ryuichi, Jpn. J. Appl. Phys. 12, 1869 (1973)

    Google Scholar 

  75. Y. Wang, P.J. Thomas, P. O’Brien, J. Phys. Chem. B. 110, 21412 (2006)

    Google Scholar 

  76. A. Srivastava, M. Deepa, N. Bahadur, M. Goyat, Mater. Chem. Phys. 114, 194 (2009)

    Google Scholar 

  77. X. Wang, C. Song, K. Geng, F. Zeng, F. Pan, Appl. Surf. Sci. 253, 6905 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ministry of Higher Education, Malaysia for providing the research funding under Fundamental Research Grant Scheme (FRGS) (203.PBAHAN.6071327) and AUN/SEED Net under Collaborative Research Program (CR) (304.PBAHAN.6050354) for providing the research funding to conduct this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swee-Yong Pung.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 54 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soo, SK., Le, A.T., Pung, SY. et al. Effect of metal/metal oxide coupling on the photoluminescence properties of ZnO microrods. Appl. Phys. A 124, 783 (2018). https://doi.org/10.1007/s00339-018-2208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2208-y

Navigation