Skip to main content
Log in

Decarburization during laser surface processing of steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Unwanted removal of carbon from surface may occur during laser surface processing of steels despite the short interaction time and thermal cycle. However, no attention is paid in literature to investigate this phenomenon systematically. This paper presents two different scenarios during laser surface processing of steels: complete absence of decarburization for an alloy steel but decarburization with depth up to 70 µm for a plain carbon steel, showing that alloying elements tend to retard decarburization process by reducing the mobility of carbon in austenite. Further analysis reveals that the laser-induced decarburization is dependent primarily on peak temperature and austenitization kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Herring, Atmosphere Heat Treatment: Atmospheres, Quenching, Testing, vol. 2, 1st edn. (BNP Media, Troy, 2015)

    Google Scholar 

  2. R.I. Carroll, J.H. Beynon, Wear 260, 523 (2006)

    Article  Google Scholar 

  3. A.K. Nath, S. Sarkar, Advances in Laser Materials Processing, 2nd edn. (Elsevier, New York, 2018), pp 257–298

    Book  Google Scholar 

  4. C.T. Kwok, K.H. Lo, F.T. Cheng, H.C. Man, Surf. Coatings Technol. 166, 221 (2003)

    Article  Google Scholar 

  5. J.H. Abboud, K.Y. Benyounis, A.G. Olabi, M.S.J. Hashmi, J. Mater. Process. Technol. 182, 427 (2007)

    Article  Google Scholar 

  6. M.F. Yan, Y.X. Wang, X.T. Chen, L.X. Guo, C.S. Zhang, Y. You, B. Bai, L. Chen, Z. Long, R.W. Li, Mater. Des. 58, 154 (2014)

    Article  Google Scholar 

  7. Y.X. Wang, M.F. Yan, B. Li, L.X. Guo, C.S. Zhang, Y.X. Zhang, B. Bai, L. Chen, Z. Long, R.W. Li, Opt. Laser Technol. 67, 57 (2015)

    Article  ADS  Google Scholar 

  8. X. Zhao, B. Song, Y. Zhang, X. Zhu, Q. Wei, Y. Shi, Mater. Sci. Eng. A 647, 58 (2015)

    Article  Google Scholar 

  9. ASTM, Subcomittee, E04.14, 10 (2014)

    Google Scholar 

  10. P.L. Larsson, A.E. Giannakopoulos, E. Söderlund, D.J. Rowcliffe, R. Vestergaard, Int. J. Solids Struct. 33, 221 (1996)

    Article  Google Scholar 

  11. L. Qian, M. Li, Z. Zhou, H. Yang, X. Shi, Surf. Coatings Technol. 195, 264 (2005)

    Article  Google Scholar 

  12. T. Mioković, V. Schulze, O. Vöhringer, D. Löhe, Acta Mater. 55, 589 (2007)

    Article  Google Scholar 

  13. S.N. Aqida, D. Brabazon, S. Naher, Appl. Phys. A 110, 673 (2013)

    Article  ADS  Google Scholar 

  14. N. Maharjan, W. Zhou, Y. Zhou, N. Wu, High-Power Laser Mater. Process. Appl. Diagnostics, Syst. VII. (International Society for Optics and Photonics, San Francisco, 2018)

    Google Scholar 

  15. A. Nagode, K. Jerina, I. Jerman, D. Vella, M. Bizjak, B. Kosec, B. Karpe, B. Zorc, J. Sol-Gel. Sci. Technol. 86, 568 (2018)

    Article  Google Scholar 

  16. J.I. Goldstein, D.E. Newbury, J.R. Michael, N.W.M. Ritchie, J.H.J. Scott, D.C. Joy, Scanning Electron Microscopy and X-Ray Microanalysis. (Springer, New York, 2017)

    Google Scholar 

  17. Z.-Q. Liu, G. Miyamoto, Z.-G. Yang, T. Furuhara, Acta Mater. 61, 3120 (2013)

    Article  Google Scholar 

  18. F. Boué-Bigne, Spectrochim. Acta Part B At. Spectrosc. 63, 1122 (2008)

    Article  ADS  Google Scholar 

  19. P.T. Pinard, A. Schwedt, A. Ramazani, U. Prahl, S. Richter, Microsc. Microanal. 19, 996 (2013)

    Article  ADS  Google Scholar 

  20. G.F. Vander Voort, Adv. Mater. Process. 137, 6 (2015)

    Google Scholar 

  21. G. Krauss, Steels: Processing, Structure, and Performance. (ASM International, Material Park, Ohio, 2015)

    Google Scholar 

  22. E. Gharibshahiyan, A.H. Raouf, N. Parvin, M. Rahimian, Mater. Des. 32, 2042 (2011)

    Article  Google Scholar 

  23. Z.X. Qiao, Y.C. Liu, L.M. Yu, Z.M. Gao, Appl. Phys. A 95, 917 (2009)

    Article  ADS  Google Scholar 

  24. H.D. Alvarenga, T. Van De Putte, N. Van Steenberge, J. Sietsma, H. Terryn, Metall. Mater. Trans. A 46, 123 (2015)

    Article  Google Scholar 

  25. H. Pantsar, J. Mater. Process. Technol. 189, 435 (2007)

    Article  Google Scholar 

  26. R.D. Cioffi, R. Wright, A comparison study on depth of decarburization and the role of stable carbide forming elements in 1075 plain carbon steel and 440 A stainless steel (New York, n.d.). https://www.forging.org/uploaded/content/members/public/PDF/Role%20of%20Stable%20Carbide%20Formers%20on%20Decarburization%20Depth.pdf

  27. O.K. Rowan, R.D. Sisson, J. Phase Equilibria Diffus. 30, 235 (2009)

    Article  Google Scholar 

  28. J. Gegner, A.A. Vasilyev, P.J. Wilbrandt, M. Kaffenberger, Proc. 7th Int. Conf. Math. Model. Comput. Simul. Mater. Technol. 20, 22 (2012)

    Google Scholar 

  29. J.O. Andersson, T. Helander, L. Höglund, P. Shi, B. Sundman, Calphad 26, 273 (2002)

    Article  Google Scholar 

  30. F.J. Harvey, Metall. Mater. Trans. A 9, 1507 (1978)

    Article  ADS  Google Scholar 

  31. S.W. Mayott, Analysis of the effects of reduced oxygen atmospheres on the decarburization depths of 300M alloy steel (New York, 2010). https://www.forging.org/uploaded/content/media/Modern_Look_at_Decarburization_Rensselaer_Phase1_2010.pdf

  32. J. Andersson, J. Ågren, J. Appl. Phys. 72, 1350 (1992)

    Article  ADS  Google Scholar 

  33. N. Maharjan, W. Zhou, Y. Zhou, Y. Guan, Appl. Phys. A 124, 519 (2018)

    Article  ADS  Google Scholar 

  34. W. Pakieła, T. Tanski, M. Pawlyta, K. Pakieła, Z. Brytan, M. Sroka, Appl. Phys. A 124, 263 (2018)

    Article  ADS  Google Scholar 

  35. D.I. Pantelis, E. Bouyiouri, N. Kouloumbi, P. Vassiliou, A. Koutsomichalis, Surf. Coatings Technol. 161, 125 (2002)

    Article  Google Scholar 

  36. C.P. Ma, Y.C. Guan, W. Zhou, Opt. Lasers Eng. 93, 171 (2017)

    Article  Google Scholar 

  37. G. Telasang, J.D. Majumdar, G. Padmanabham, I. Manna, Surf. Coatings Technol. 261, 69 (2015)

    Article  Google Scholar 

  38. S. Guarino, M. Barletta, A. Afilal, J. Manuf. Process. 28, 266 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Support from A*STAR SINGA Scholarship, Nanyang Technological University and Advanced Remanufacturing and Technology Center (ARTC), Singapore under the Collaborative Research Project RCA-15/287 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, N., Zhou, W., Zhou, Y. et al. Decarburization during laser surface processing of steel. Appl. Phys. A 124, 682 (2018). https://doi.org/10.1007/s00339-018-2104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2104-5

Navigation