Skip to main content
Log in

Ablation morphology and ablation threshold of Ti-6Al-4V alloy during femtosecond laser processing

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The research explores the use of femtosecond laser to clean the surface of Ti-6Al-4V alloy. The laser ablation threshold was determined from either depths or diameters of laser-induced craters. Both methods are expected to give the same results; however, it was found that ablation threshold can be determined more reliably from the diameters than from the depths. This can be understood from the study of the surface morphology. As the laser fluence increased, the ablated surface became increasingly rougher, making it difficult to measure the depths accurately. In contrast, diameters of laser-induced craters could be measured with much better certainty and thus enabled the ablation threshold to be determined more accurately. The ablation threshold was found to be 0.142 ± 0.010 J/cm2 for 100 laser pulses at 130 fs pulse duration and 790 nm wavelength and it tends to decrease with increase in number of laser pulses. The single-pulse ablation threshold was determined to be 0.272 ± 0.021 J/cm2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. D.J. Whitehead, P.L. Crouse, M.J.J. Schmidt, L. Li, M.W. Turner, A.J.E. Smith, Appl. Phys. A 93, 123 (2008)

    Article  ADS  Google Scholar 

  2. M.W. Turner, P.L. Crouse, L. Li, Appl. Surf. Sci. 252, 4792 (2006)

    Article  ADS  Google Scholar 

  3. M.W. Turner, P.L. Crouse, L. Li, Appl. Surf. Sci. 253, 7992 (2007)

    Article  ADS  Google Scholar 

  4. N. Maharjan, W. Zhou, Y. Zhou, Y.C. Guan, Conference on Lasers Electro-Optics Pacific Rim (IEEE, Singapore, 2017)

    Google Scholar 

  5. Y. Hirayama, M. Obara, Appl. Surf. Sci. 197, 741 (2002)

    Article  ADS  Google Scholar 

  6. P.T. Mannion, J. Magee, E. Coyne, G.M. O’connor, T.J. Glynn, Appl. Surf. Sci. 233, 275 (2004)

    Article  ADS  Google Scholar 

  7. J. Bonse, A. Rosenfeld, J. Laser Appl. 042006, 1 (2012)

    Google Scholar 

  8. J. Bonse, R. Koter, M. Hartelt, D. Spaltmann, S. Pentzien, S. Höhm, A. Rosenfeld, J. Krüger, Appl. Phys. A 117, 103 (2014)

    Article  ADS  Google Scholar 

  9. S.I. Anisimov, B.L. Kapeliovich, T.L. Perelman, Zh. Eksp. Teor. Fiz. 66, 776 (1974)

    ADS  Google Scholar 

  10. J. Cheng, C.S. Liu, S. Shang, D. Liu, W. Perrie, G. Dearden, K. Watkins, Opt. Laser Technol. 46, 88 (2013)

    Article  ADS  Google Scholar 

  11. D. Perez, L.J. Lewis, Phys. Rev. B 67, 184102 (2003)

    Article  ADS  Google Scholar 

  12. R. Kelly, A. Miotello, Phys. Rev. E 60, 2616 (1999)

    Article  ADS  Google Scholar 

  13. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 86, 11916 (2005)

    Article  Google Scholar 

  14. M. Hashida, Y. Miyasaka, T. Nishii, M. Shimizu, S. Inoue, S. Sakabe, Electron. Commun. Jpn 99, 88 (2016)

    Article  Google Scholar 

  15. M. Ye, C.P. Grigoropoulos, J. Appl. Phys. 89, 5183 (2001)

    Article  ADS  Google Scholar 

  16. L. Gemini, M. Hashida, Y. Miyasaka, S. Inoue, J. Limpouch, T. Mocek, S. Sakabe, Appl. Surf. Sci. 336, 349 (2015)

    Article  ADS  Google Scholar 

  17. P. Mannion, J. Magee, E. Coyne, G.M. O’Connor, in Opto Irel. (International Society for Optics and Photonics, Bellingham, 2003), pp. 470–478

    Google Scholar 

  18. B. Zheng, G. Jiang, W. Wang, K. Wang, X. Mei, AIP Adv. 4, 31310 (2014)

    Article  Google Scholar 

  19. M.S. Brown, C.B. Arnold, Laser Precis. Microfabr. 135, 91 (2010)

    Article  ADS  Google Scholar 

  20. S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B.N. Chichkov, B. Wellegehausen, H. Welling, JOSA B 14, 2716 (1997)

    Article  ADS  Google Scholar 

  21. J. Bonse, J.M. Wrobel, J. Krüger, W. Kautek, Appl. Phys. A Mater. Sci. Process. 72, 89 (2001)

    Article  ADS  Google Scholar 

  22. W.M. Steen, in Laser Material Processing, Third (Springer, New York, 2003)

    Book  Google Scholar 

  23. J. Byskov-Nielsen, J.-M. Savolainen, M.S. Christensen, P. Balling, Appl. Phys. A Mater. Sci. Process. 101, 97 (2010)

    Article  ADS  Google Scholar 

  24. D. Perez, L.J. Lewis, Phys. Rev. Lett. 89, 255504 (2002)

    Article  ADS  Google Scholar 

  25. N.M. Bulgakova, I.M. Bourakov, Appl. Surf. Sci. 197, 41 (2002)

    Article  ADS  Google Scholar 

  26. Y. Jee, M.F. Becker, R.M. Walser, JOSA B 5, 648 (1988)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support from A*STAR SINGA Scholarship and Collaborative Research Project RCA-15/287.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, N., Zhou, W., Zhou, Y. et al. Ablation morphology and ablation threshold of Ti-6Al-4V alloy during femtosecond laser processing. Appl. Phys. A 124, 519 (2018). https://doi.org/10.1007/s00339-018-1928-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1928-3

Navigation