Skip to main content

Advertisement

Log in

Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Material synthesis plays an important role in determining the performance and cost of final devices. In this paper, rheological phase method has been applied to conveniently synthesize carbon-coated LiNi0.6Co0.2Mn0.2O2 (LNCM622/C) as the cathode material of high-performance lithium-ion batteries (LIBs), avoiding the use of co-precipitation route with complicated procedures and environmental issues. Importantly, the addition of citric acid enabled a relative low temperature of crystallization initiation of the reaction of forming LNCM622/C, which is crucial for the material synthesis. As a result, highly ordered LNCM622/C materials have been obtained with a final calcinating temperature of 900 °C, which is comparable to that being used in co-precipitation route. It is worth mentioning that the synthesis reaction was processed in air without the extra-oxygen gas supply. By varying lithium contents (Li/TM = 0.95, 1.00, 1.05, 1.10, 1.15, and 1.20 by molar, TM = Ni, Co, and Mn), the structure and morphology of resulted LNCM622/C materials were changed, leading to different electrochemical performances of corresponded LIBs. It was found that the Li/TM = 1.15 sample had the best initial discharged capacity at 0.1 °C rate (177.1 mAh g− 1), whereas the Li/TM = 1.05 sample showed the best cycling and rate performance (100.6 mAh g− 1 at 1 °C) among synthesized samples. Overall, these results suggest that rheological phase method can be considered as an effective route for synthesizing carbon-coated LiNi0.6Co0.2Mn0.2O2 cathode materials for high-performance LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. P. Gibot, M. Casas-Cabanas, L. Laffont, S. Levasseur, P. Carlach, S. Hamelet, J.M. Tarascon, C. Masquelier, Nat. Mater. 7, 741–747 (2008)

    Article  ADS  Google Scholar 

  2. J.M. Tarascon, M. Armand, Nature 6861, 359–414 (2001)

    Article  ADS  Google Scholar 

  3. Z. Yang, J. Zhang, M.C. Kintner-Meyer, X. Lu, D. Choi, J.P. Lemmon, J. Liu, Chem. Rev. 111, 3577–3613 (2011)

    Article  Google Scholar 

  4. W.Y. Liu, W.H. Hua, Z. Zheng, B.H. Zhong, Z.Y. Zhang, Ionics. 22, 1781–1790 (2016)

    Article  Google Scholar 

  5. Z. Zheng, X.D. Guo, S.L. Chou, W.B. Hua, H.K. Liu, S.X. Dou, X.S. Yang, Electrochim. Acta 191, 401–410 (2016)

    Article  Google Scholar 

  6. L.W. Liang, K. Du, W. Lu, Z.D. Peng, Y.B. Cao, G.R. Hu, Electrochim. Acta 146, 207–217 (2014)

    Article  ADS  Google Scholar 

  7. C.C. Pan, Y.R. Zhu, Y.C. Yang, H.S. Hou, M.J. Jing, W.X. Song, X.M. Yang, X.B. Ji, Trans. Nonferrous Met. Soc. China 26, 1396–1420 (2016)

    Article  Google Scholar 

  8. L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, G.R. Hu, Chin. Chem. Lett. 25, 883–886 (2014)

    Article  Google Scholar 

  9. L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, G.R. Hu, Electrochim. Acta 130, 82–89 (2014)

    Article  ADS  Google Scholar 

  10. L.W. Liang, K. Du, Z.D. Peng, Y.B. Cao, G.R. Hu, J. Alloys Compd. 613, 296–305 (2014)

    Article  Google Scholar 

  11. N.Y. Kim, T.E. Yim, J.H. Song, J.S. Yu, Z.H. Lee, J. Power Sources 307, 641–648 (2016)

    Article  ADS  Google Scholar 

  12. H. Tang, J. Xu, Mater. Sci. Eng. B 178, 1503–1508 (2013)

    Article  Google Scholar 

  13. H. Tang, M.Y. Xi, X.M. Huang, C.Q. Feng, Y. Zhang, K.L. Zhang, J. Mater. Sci. Lett. 21, 999–1001 (2002)

    Article  Google Scholar 

  14. H. Tang, C.Q. Feng, Q. Fan, T.M. Lei, J.T. Sun, L.J. Yuan, K.L. Zhang, Chem. Lett. 2002, 822–822 (2002)

    Article  Google Scholar 

  15. J. Yan, P. Wang, H. Fang, L.X. Wang, L. Li, H.L. Gao, L.Z. Wang, L.S. Zhang, Y.H. Song, Z.Y. Tang, Mater. Res. Bull. 106, 250–256 (2018)

    Article  Google Scholar 

  16. X.M. Sun, S.Y. Yin, C.Q. Feng, J. Solid State Electrochem. 21, 1625–1630 (2017)

    Article  Google Scholar 

  17. Y.J. Zhong, Z.G. Wu, J.T. Li, W. Xiang, X.D. Guo, B.H. Zhong, X.L. Wang, Ionics. 6058, 1–11 (2017)

    Google Scholar 

  18. X.Y. Huang, Q.H. Hu, J.Q. Liu, H.W. Liu, Ionics. 23, 2269–2273 (2017)

    Article  Google Scholar 

  19. H.W. Liu, P.Y. Ji, X.Y. Han, Mater. Chem. Phys. 183, 152–157 (2016)

    Article  ADS  Google Scholar 

  20. X.B. Zheng, X.H. Li, Z.J. Huang, B. Zhang, Z.X. Wang, H.J. Guo, Z.H. Yang, J. Alloys Compd. 644, 607–614 (2015)

    Article  Google Scholar 

  21. L. Wang, B.R. Wu, D.B. Mu, X.J. Liu, Y.Y. Peng, H.L. Xu, L. Gai, F. Wu, J. Alloys Compd. 674, 360–367 (2016)

    Article  Google Scholar 

  22. B. Piskin, M. Kadri-Aydino, Int. J. Hydrog. Energy 41, 9852–9859 (2016)

    Article  Google Scholar 

  23. K.L. Cheng, D.B. Mu, B.R. Wu, L. Wang, Y. Jiang, R. Wang, Int. J. Miner. Metall. Mater. 24, 342–351 (2017)

    Article  Google Scholar 

  24. C.C. Pan, Y.R. Zhu, Y.C. Yang, H.S. Hou, M.J. Jing, W.X. Song, X.M. Yang, X.B. Ji, Trans. Nonferrous Met. Soc. China. 26, 1396–1402 (2016)

    Article  Google Scholar 

  25. D. Li, F. Lian, X.M. Hou, K.C. Chou, Int. J. Miner. Metall. Mater. 19, 856–862 (2012)

    Article  Google Scholar 

  26. P. Yue, Z.X. Wang, Q. Zhang, G.C. Yan, H.J. Guo, X.H. Li, Ionics. 19, 1329–1334 (2013)

    Article  Google Scholar 

  27. Z.Q. Chen, J. Wang, J.X. Huang, T. Fu, G.Y. Sun, S.B. Lai, R. Zhou, K. Li, J.B. Zhao, J. Power Sources. 363, 168–176 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the special financial grant from the Jiangxi Provincial Education Department Technology Landing Program (KJLD14008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Tang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 681 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, T., Sun, F., Zhou, X. et al. Rheological phase method synthesis of carbon-coated LiNi0.6Co0.2Mn0.2O2 as the cathode material of high-performance lithium-ion batteries. Appl. Phys. A 124, 720 (2018). https://doi.org/10.1007/s00339-018-2022-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2022-6

Navigation