Skip to main content
Log in

The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

To improve the cycling performance of nickel-rich layered LiNi0.6Co0.2Mn0.2O2 material, many methods have been studied to reduce cation mixing degree, improve layered structure and modify particle morphology, including doping elements, coating metal oxides and morphology control (spherical, nanoflower, core–shell structure, etc.). In this paper, a new gradient calcination process through four-step temperature gradients is applied to synthesize LiNi0.6Co0.2Mn0.2O2 material. The LiNi0.6Co0.2Mn0.2O2 material synthesized by gradient calcination shows more excellent electrochemical performance than traditional method. The XRD results indicate that the LiNi0.6Co0.2Mn0.2O2 material produced by four-step calcination shows lower cation mixing degree and better crystallinity. In addition, the LiNi0.6Co0.2Mn0.2O2 cathode produced by gradient calcination presents the highest initial capacity (177.9 mAh g−1) and a retention of 82.07% after 100 cycles at 0.2C. And the material shows the best electrochemical properties when the final temperature in these steps is 820 °C. Our results explain the reason why the thermal stability and electrochemical performance could be improved by gradient calcination from the aspect of material crystallinity, crystal defects, cation mixing degree and the completeness of the layered structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Armand, J.M. Tarascon, Nature 451, 652–657 (2008)

    CAS  Google Scholar 

  2. J.M. Tarascon, M. Armand, Nature 414, 359–367 (2001)

    CAS  Google Scholar 

  3. J.B. Goodenough, Y. Kim, Chem. Mater. 22, 587–603 (2010)

    CAS  Google Scholar 

  4. M.H. Kim, H.S. Shin, D. Shin, Y.K. Sun, J. Power Sources 159, 1328–1333 (2006)

    CAS  Google Scholar 

  5. K. Du, C. Hua, C. Tan, Z. Peng, Y. Cao, G. Hu, J. Power Sources 263, 203–208 (2014)

    CAS  Google Scholar 

  6. Y. Koyama, Y. Makimura, I. Tanaka, H. Adachi, T. Ohzuku, J. Electrochem. Soc. A 151, 1499–1506 (2004)

    Google Scholar 

  7. T. Ohzuku, Y. Makimura, Chem. Lett. 30, 642–643 (2001)

    Google Scholar 

  8. M. Takahashi, S. Tobishima, K. Takei, Y. Sakurai, J. Power Sources 97–98, 508–511 (2001)

    Google Scholar 

  9. A.D. Robertson, S.H. Lu, W.F.J. Howard, J. Electrochem. Soc. 144, 3500–3505 (1997)

    CAS  Google Scholar 

  10. A. Kuwahara, S. Suzuki, M. Miyayama, Ceram. Int. 34, 863–866 (2008)

    CAS  Google Scholar 

  11. Y.K. Sun, D.J. Lee, Y.J. Lee, Z. Chen, S.T. Myung, A.C.S. Appl, Mat. Interfaces 5, 11434–11440 (2013)

    CAS  Google Scholar 

  12. F. Wu, M. Wang, Y. Su, S. Chen, B. Xu, J. Power Sources 191, 628–632 (2009)

    CAS  Google Scholar 

  13. Y. Chen, Y. Zhang, B. Chen, Z. Wang, C. Lu, J. Power Sources 256, 20–27 (2014)

    CAS  Google Scholar 

  14. C.H. Chen, C.J. Wang, B.J. Hwang, J. Power Sources 146, 626–629 (2005)

    CAS  Google Scholar 

  15. Y. Zeng, K. Qiu, Z. Yang, F. Zhou, L. Xia, Y. Bu, Ceram. Int. 42, 10433–10438 (2006)

    Google Scholar 

  16. Y. Li, Q. Su, Q. Han, P. Li, L. Li, C. Xu, X. Cao, G. Cao, Ceram. Int. 40, 14933–14938 (2014)

    CAS  Google Scholar 

  17. W. Hua, J. Zhang, Z. Zheng, W. Liu, X. Peng, X.D. Guo, B. Zhong, Y.J. Wang, X. Wang, Dalton Trans. 43, 14824–14832 (2014)

    CAS  Google Scholar 

  18. T.E. Conry, A. Mehta, J. Cabana, M.M. Doeff, Chem. Mater. 24, 3307–3317 (2012)

    CAS  Google Scholar 

  19. Z. Wang, Z. Wang, H. Guo, W. Peng, X. Li, G. Yan, J. Wang, J. Alloys Compd. 621, 212–219 (2015)

    CAS  Google Scholar 

  20. S.W. Woo, S.T. Myung, H. Bang, D.W. Kim, Y.-K. Sun, Electrochim. Acta 54, 3851–3856 (2009)

    CAS  Google Scholar 

  21. S.T. Myung, S. Komaba, K. Hosoya, N. Hirosaki, Y. Miura, N. Kumagai, Chem. Mater. 17, 2427–2435 (2005)

    CAS  Google Scholar 

  22. L.J. Li, Z.X. Wang, Q.C. Liu, C. Ye, Z.Y. Chen, L. Gong, Electrochim. Acta 77, 89–96 (2012)

    CAS  Google Scholar 

  23. N.K. Karan, M. Balasubramanian, D.P. Abraham, M.M. Furczon, D.K. Pradhan, J.J. Saavedra-Arias, R. Thomas, R.S. Katiyar, J. Power Sources 187, 586–590 (2009)

    CAS  Google Scholar 

  24. H.S. Shin, D. Shin, Y.K. Sun, Electrochim. Acta 52, 1477–1482 (2007)

    Google Scholar 

  25. P. Yue, Z. Wang, X. Li, X. Xiong, J. Wang, X. Wu, H. Guo, Electrochim. Acta 95, 112–118 (2013)

    CAS  Google Scholar 

  26. Y. Chen, Q. Jiao, L. Wang, Y. Hu, N. Sun, Y. Shen, Y. Wang, C. R. Chim. 16, 845–849 (2013)

    CAS  Google Scholar 

  27. X. Jin, Q. Xu, X. Liu, X. Yuan, H. Liu, Ionics 22, 1–8 (2016)

    CAS  Google Scholar 

  28. D. Wang, X. Li, Z. Wang, H. Guo, Y. Xu, Y. Fan, J. Ru, Electrochim. Acta 188, 48–56 (2016)

    CAS  Google Scholar 

  29. X. Xiong, Z. Wang, G. Yan, H. Guo, X. Li, J. Power Sources 245, 183–193 (2014)

    CAS  Google Scholar 

  30. D. Li, Y. Kato, K. Kobayakawa, H. Noguchi, Y. Sato, J. Power Sources 160, 1342–1348 (2006)

    CAS  Google Scholar 

  31. C. Tan, H. Luo, K. Du, D. Huang, K. Hu, Y. Cao, G. Hu, Ionics 24, 1–12 (2018)

    CAS  Google Scholar 

  32. W.B. Hua, X.D. Guo, Z. Zheng, Y.J. Wang, B.H. Zhong, B. Fang, J.Z. Wang, S.L. Chou, H. Liu, J. Power Sources 275, 200–206 (2015)

    CAS  Google Scholar 

  33. Z. Yang, J. Lu, D. Bian, W. Zhang, X. Yang, J. Xia, G. Chen, H. Gu, G. Ma, J. Power Sources 272, 144–151 (2014)

    CAS  Google Scholar 

  34. K. Du, F. Yang, G. Hu, Z. Peng, Y. Cao, K.S. Ryu, J. Power Sources 244, 29–34 (2013)

    CAS  Google Scholar 

  35. D. Wang, Z. Wang, X. Li, H. Guo, Y. Xu, Y. Fan, W. Pan, Appl. Surf. Sci. 371, 172–179 (2016)

    CAS  Google Scholar 

  36. L. Liao, X. Wang, X. Luo, X. Wang, S. Gamboa, P.J. Sebastian, J. Power Sources 160, 657–661 (2006)

    CAS  Google Scholar 

  37. K. Yin, W. Fang, B. Zhong, X. Guo, Y. Tang, X. Nie, Electrochim. Acta 85, 99–103 (2012)

    CAS  Google Scholar 

  38. H. Lu, H. Zhou, A.M. Svensson, A. Fossdal, E. Sheridan, S. Lu, F. Vullum-Bruer, Solid State Ionics 249–250, 105–111 (2013)

    Google Scholar 

  39. X. Zhang, W.J. Jiang, A. Mauger, Qilu, F. Gendron, C.M. Julien, J. Power Sources 195, 1292–1301 (2009)

    Google Scholar 

  40. D. Mohanty, S. Kalnaus, R.A. Meisner, K.J. Rhodes, J. Li, E.A. Payzant, D.L. Wood III, C. Daniel, J. Power Sources 229, 239–248 (2013)

    CAS  Google Scholar 

  41. L. Liang, K. Du, Z. Peng, Y. Cao, J. Duan, J. Jiang, G. Hu, Electrochim. Acta 130, 82–89 (2014)

    CAS  Google Scholar 

  42. Y.K. Sun, J.M. Han, S.T. Myung, S.W. Lee, K. Amine, Electrochem. Commun. 8, 821–826 (2006)

    CAS  Google Scholar 

  43. W.Z. Jia, Y.L. Hu, Y.Y. Song, K. Wang, X.H. Xia, Biosens. Bioelectron. 23, 892–898 (2008)

    CAS  Google Scholar 

Download references

Acknowledgements

This work is primarily supported by the LongShan academic talent research supporting program of SWUST (No. 17LZX507).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Li, J., Zeng, M. et al. The preparation and electrochemical study of LiNi0.6Co0.2Mn0.2O2 cathode material for lithium-ion battery. J Mater Sci: Mater Electron 31, 848–856 (2020). https://doi.org/10.1007/s10854-019-02600-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02600-6

Navigation