Skip to main content
Log in

One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The “one-step” functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage–SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage–SiNPs are performed by UV–Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage–SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage–SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage–SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M.A. Walling, J.A. Novak, J.R.E. Shepard, Int. J. Mol. Sci. 10, 441–491 (2009)

    Article  Google Scholar 

  2. W.C.W. Chan, D.J. Maxwell, X.H. Gao, R.E. Bailey, M.Y. Han, S.M. Nie, Curr. Opin. Biotechnol. 13, 40–46 (2002)

    Article  Google Scholar 

  3. A.M. Derfus, W.C.W. Chan, S.N. Bhatia, Nano Lett. 4, 11–18 (2004)

    Article  ADS  Google Scholar 

  4. P. Chewchinda, O. Odawara, H. wada, CheM 3, 81–86 (2016)

    Google Scholar 

  5. R. Intartaglia, K. Bagga, A. Genovese, A. Athanassiou, R. Cingolani, A. Diaspro, F. Brandi, Chem. Chem. Phys. 14, 15406 (2012)

    Article  Google Scholar 

  6. K. Wang, X. He, X. Yang, H. Shi, Acc. Chem. Res. 46(7), 1367–1376 (2013)

    Article  Google Scholar 

  7. I.L. Medintz, H.T. Uyeda, E.R. Goldman, H. Mattoussi, Nat. Mater. 4, 435–446 (2005)

    Article  ADS  Google Scholar 

  8. N.S.K. Gunda, M. Singh, L. Norman, K. Kaur, S.K. Mitra, Appl. Surf. Sci. 305, 522–530 (2014)

    Article  ADS  Google Scholar 

  9. V. Cauda, C. Argyo, T. Bein, J. Mater. Chem. 20, 8693–8699 (2010)

    Article  Google Scholar 

  10. S.V. Rao, G.K. Podagatlapalli, S. Hamad, J. Nanosci. Nanotechnol. 14(2), 1364–1388 (2014)

    Article  Google Scholar 

  11. D. Joshi, R.K. Soni, Appl. Phys. A 116, 635–664 (2014)

    Article  ADS  Google Scholar 

  12. K. Bagga, A. Barchanski, R. Intartaglia, S. Dante, R. Marotta, A. Diaspro, C.L. Sajti, F. Brandi, Laser Phys. Lett. 10, 065603 (2013)

    Article  ADS  Google Scholar 

  13. T.C. Lee, K. Yusoffa, S. Nathan, W.S. Tan, J. Virol. Methods. 136(1–2), 224–229 (2006)

    Article  Google Scholar 

  14. S. Petersen, S. Barcikowski, Adv. Funct. Mater. 19, 1167–1172 (2009)

    Article  Google Scholar 

  15. V.A. Petrenko, G.P. Smith, Protein Eng. 13(8), 589–592 (2000)

    Article  Google Scholar 

  16. C.F. Barbas III, D.R. Burton, J.K. Scott, G.J. Silverman, Phage Display, A Laboratory Manual. (Cold Spring Harbor Lab. Press, Woodbury, 2001)

    Google Scholar 

  17. S. Scibilia, G. Lentini, E. Fazio, D. Franco, F. Neri, A.M. Mezzasalma, S.P.P. Guglielmino, Sens. Bio-Sens. Res. 7, 146–152 (2016)

    Article  Google Scholar 

  18. L.M. De Plano, S. Carnazza, G.M.L. Messina, M.G. Rizzo, G. Marletta, S.P.P. Guglielmino, Colloids Surf. B 157, 473–480 (2017)

    Article  Google Scholar 

  19. G. Lentini, E. Fazio, F. Calabrese, L.M. DePlano, M. Puliafico, D. Franco, M.S. Nicolò, S. Carnazza, S.Trusso,A. Allegra, F. Neri, C. Musolino, S.P.P. Guglielmino, Biosens. Bioelectron. 74, 398–405 (2015)

    Article  Google Scholar 

  20. E. Fazio, A. Cacciola, A.M. Mezzasalma, G. Mondio, F. Neri, R. Saija, J. Quant. Spectro. Rad. Trans. 124, 86–93 (2013)

    Article  ADS  Google Scholar 

  21. D.L. Jaye, C.M. Geigerman, R.E. Fuller, A. Akyildiz, A. Parkos, J. Immunol. Methods 295, 119–127 (2004)

    Article  Google Scholar 

  22. J.C. Butler, T. Angelini, J.X. Tang, G.C.L. Wong, Phys. Rev. Lett. 91, 028301 (2003)

    Article  ADS  Google Scholar 

  23. K.N. Parent, S.M. Doyle, E. Anderson, C.M. Teschke, Virology 340, 33–45 (2005)

    Article  Google Scholar 

  24. T.G. Ulusoy Ghobadi, A. Ghobadi, T. Okyay, K. Topalli, A.K. Okyay, RSC Adv. 6, 112520 (2016)

    Article  Google Scholar 

  25. J.R. Brigati, V.A. Petrenko, Anal. Bioanal. Chem. 382, 1346–1350 (2005)

    Article  Google Scholar 

  26. M. Coen, R. Lehmann, P. Groning, M. Bielmann, C. Galli, L. Schlapbach, J. Colloid Interface Sci. 233, 180–189 (2001)

    Article  ADS  Google Scholar 

  27. F.X. Schmid, In Encyclopedia Life Sciences, Introductory Articles, ed. by R. Bridgewater (Wiley, 2001), pp. 1–4. https://doi.org/10.1038/npg.els.0003142

  28. S.A. Overman, P. Bondr, N.C. Maiti, G.J. Thomas Jr, Biochemistry 44, 3091–3100 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. F. Barreca and Prof. F. Neri for helping with scanning electron microscopy operating in transmission mode (STEM) measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela M. Mezzasalma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Plano, L.M., Scibilia, S., Rizzo, M.G. et al. One-step production of phage–silicon nanoparticles by PLAL as fluorescent nanoprobes for cell identification. Appl. Phys. A 124, 222 (2018). https://doi.org/10.1007/s00339-018-1637-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1637-y

Navigation