Skip to main content
Log in

Thermostability of landscape phage probes

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Immunoassays have traditionally relied on antibodies as diagnostic probes. Their use outside of a laboratory, however, may be problematic because antibodies are often unstable in severe environmental conditions. Environmental monitoring requires thermostable probes, such as landscape phage, that carry thousands of foreign peptides on their surfaces, are superior to antibodies, and can operate in non-controlled conditions. While parent wild-type phage are known to be extremely stable in various media at high temperatures, no work has been done to demonstrate the stability of landscape phage probes. We examined the thermostability of a landscape phage probe and a monoclonal antibody specific for β-galactosidase in parallel in an enzyme-linked immunosorbent assay (ELISA) format. They were both stable for greater than six months at room temperature, but at higher temperatures the antibody degraded more rapidly than the phage probe. Phage retained detectable binding ability for more than six weeks at 63 °C, and three days at 76 °C. The activation energy of phage degradation was determined to be 1.34×105 J/mol. These results confirm that phage probes are highly thermostable and can function even after exposure to high temperatures during shipping, storage and operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. van der Linden RH, Frenken LG, de Geus B, Harmsen MM, Ruuls RC, Stok W, de Ron L, Wilson S, Davis P, Verrips CT (1999) Biochim Biophys Acta 1431:37–46

    Google Scholar 

  2. Usami A, Ohtsu A, Takahama S, Fujii T (1996) J Pharm Biomed Anal 14:1133–1140

    Article  CAS  PubMed  Google Scholar 

  3. Kramer K, Fiedler M, Skerra A, Hock B (2002) Biosens Bioelectron 17:305–313

    Article  CAS  PubMed  Google Scholar 

  4. Brichta J, Vesela H, Franek M (2003) Vet Med (Prague) 48:237–247

    CAS  Google Scholar 

  5. Reiter Y, Brinkmann U, Webber KO, Jung SH, Lee B, Pastan I (1994) Protein Eng 7:697–704

    CAS  PubMed  Google Scholar 

  6. Willuda J, Honegger A, Waibel R, Schubiger PA, Stahel R, Zangemeister-Wittke U, Pluckthun A (1999) Cancer Res 59:5758–5767

    CAS  PubMed  Google Scholar 

  7. Steinhauer C, Wingren C, Hager AC, Borrebaeck CA (2002) Biotechniques 33(Suppl):38–45

    PubMed  Google Scholar 

  8. Dooley H, Grant SD, Harris WJ, Porter AJ (1998) Biotechnol Appl Biochem 28(Pt 1):77–83

    CAS  PubMed  Google Scholar 

  9. Petrenko VA, Sorokulova IB (2004) J Microbiol Methods 58:147–168

    Article  CAS  PubMed  Google Scholar 

  10. Brigati J, Williams DD, Sorokulova IB, Nanduri V, Chen IH, Turnbough CL Jr, Petrenko VA (2004) Clin Chem 50:1899–1906

    Article  CAS  PubMed  Google Scholar 

  11. Petrenko VA, Vodyanoy VJ (2003) J Microbiol Methods 53:253–262

    Google Scholar 

  12. Petrenko VA, Smith GP (2000) Protein Eng 13:589–592

    Article  CAS  PubMed  Google Scholar 

  13. Kouzmitcheva GA, Petrenko VA, Smith GP (2001) Clin Diagn Lab Immunol 8:150–160

    Google Scholar 

  14. Samoylova TI, Petrenko VA, Morrison NE, Globa LP, Baker HJ, Cox NR (2003) Mol Cancer Ther 2:1129–1137

    Google Scholar 

  15. Petrenko VA, Smith GP, Gong X, Quinn T (1996) Protein Eng 9:797–801

    CAS  PubMed  Google Scholar 

  16. Romanov VI, Durand DB, Petrenko VA (2001) Prostate 47:239–251

    Article  CAS  PubMed  Google Scholar 

  17. Webster R (2001) Filamentous phage biology. In: Barbas CF et al (eds) Phage display a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, pp 1.1–1.37

  18. Smith GP, Petrenko VA (1997) Chem Rev 97:391–410

    Article  CAS  PubMed  Google Scholar 

  19. Wiseman RL, Dunker AK, Marvin DA (1972) Virology 48:230–244

    Article  CAS  PubMed  Google Scholar 

  20. Hoffmann-Berling H, Marvin DA, Duerwald H (1963) Z Naturforsch B 18:876–883

    CAS  PubMed  Google Scholar 

  21. Meynell GG, Lawn AM (1968) Nature 217:1184–1186

    Google Scholar 

  22. Pederson DM, Welsh LC, Marvin DA, Sampson M, Perham RN, Yu M, Slater MR (2001) J Mol Biol 309:401–421

    Article  CAS  PubMed  Google Scholar 

  23. Sakaki Y, Oshima T (1975) J Virol 15:1449–1453

    CAS  PubMed  Google Scholar 

  24. Hsu YC (1968) Bacteriol Rev 32:387–399

    CAS  PubMed  Google Scholar 

  25. Yu J, Smith GP (1996) Methods Enzymol 267:3–27

    CAS  PubMed  Google Scholar 

  26. Segal IH (1976) Biochemical calculations, 2nd edn. Wiley, New York

    Google Scholar 

  27. Kenley RA, Tracht S, Stepanenko A, Townsend M, L’Italien J (2000) AAPS PharmSciTech 1:E7

    Article  CAS  PubMed  Google Scholar 

  28. Olofsson L, Ankarloo J, Nicholls IA (1998) J Mol Recognition 11:91–93

    Article  CAS  Google Scholar 

  29. Olofsson L, Ankarloo J, Andersson PO, Nicholls IA (2001) Chem Biol 8:661–671

    Article  CAS  PubMed  Google Scholar 

  30. Berglund J, Lindbladh C, Nicholls IA, Mosbach K (1998) Anal Commun 35:3–7

    Article  CAS  Google Scholar 

  31. Amako K, Yasunaka K (1977) Nature 267:862–863

    Google Scholar 

  32. Schwind P, Kramer H, Kremser A, Ramsberger U, Rasched I (1992) Eur J Biochem 210:431–436

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by ARO/DARPA Grant # DAAD 19-01-10454 (to VAP) and NIH Grant # NIH-1 R21 AI055645 (to VAP). The authors thank Dr. Vitaly Vodyanoy for assistance with data analysis, and Director of AUDFS Center Dr. Bryan Chin for fruitful discussions and technical support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery A. Petrenko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brigati, J.R., Petrenko, V.A. Thermostability of landscape phage probes. Anal Bioanal Chem 382, 1346–1350 (2005). https://doi.org/10.1007/s00216-005-3289-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3289-y

Keywords

Navigation