Skip to main content
Log in

Infrared to near-ultraviolet optical response for zigzag-edge silicene nanoribbons under the irradiation of an external electromagnetic field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We investigate theoretically the width-dependent electronic structure and optical spectrum for intrinsic zigzag-edge silicene nanoribbons with N silicon atoms of the A and B sublattice (N-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. Based on the method of the tight-binding approximation, we have derived a width-dependent dispersion relation and wave function for N-ZSiNRs under the hard-wall boundary condition. By way of the dipole-transition theorem for semiconductors, both the 8- and 16-ZSiNRs have been observed to exhibit broad values (0.30–3.20 eV) of optical conductivity, dielectric function and electron energy loss spectrum in the range of infrared to near-ultraviolet. The optical spectra for 8- and 16-ZSiNRs have been manifested to be transitions between the valence and conduction bands with the same subband indices, as well as the resonances between the edge state and bulk state subbands, while the optical transitions among the different indexed bulk subbands should be forbidden owing to the non-conserved momentum. The obtained results are believed to be of importance in exploring new effects and optoelectronic applications of the silicene-based electron devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Z. Ni, Q. Liu, K. Tang, J. Zheng, J. Zhou, R. Qin, Z. Gao, D. Yu, J. Lu, Nano Lett. 12, 113–118 (2012)

    Article  ADS  Google Scholar 

  2. S. Cahangirov, M. Topsakal, E. Aktürk, H. Şahin, S. Ciraci, Phys. Rev. Lett. 102, 236804 (2009)

    Article  ADS  Google Scholar 

  3. K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Phys. Rev. Lett. 105, 136805 (2010)

    Article  ADS  Google Scholar 

  4. V. Tran, L. Yang, Phys. Rev. B 89, 245407 (2014)

    Article  ADS  Google Scholar 

  5. S. Lebègue, O. Eriksson, Phys. Rev. B 79, 115409 (2009)

    Article  ADS  Google Scholar 

  6. Y. Ding, J. Ni, Appl. Phys. Lett. 95, 083115 (2009)

    Article  ADS  Google Scholar 

  7. B. Lalmi, H. Oughaddou, H. Enriquez, A. Kara, S. Vizzini, B. Ealet, B. Aufray, Appl. Phys. Lett. 97, 223109 (2010)

    Article  ADS  Google Scholar 

  8. P. Vogt, P. De Padova, C. Quaresima, J. Avila, E. Frantzeskakis, M.C. Asensio, A. Resta, B. Ealet, G. Le Lay, Phys. Rev. Lett. 108, 155501 (2012)

    Article  ADS  Google Scholar 

  9. B. Feng, Z. Ding, S. Meng, Y. Yao, X. He, P. Cheng, L. Chen, K.H. Wu, Nano Lett. 12, 3507–3511 (2012)

    Article  ADS  Google Scholar 

  10. L. Tao, E. Cinquanta, D. Chiappe, C. Grazianetti, M. Fanciulli, M. Dubey, A. Molle, D. Akinwande, Nat. Nanotech. 10, 227–231 (2015)

    Article  ADS  Google Scholar 

  11. G.G. Guzmán-Verri, L.C.L.Y. Voon, Phys. Rev. B 76, 075131 (2007)

  12. C.C. Liu, H. Jiang, Y.G. Yao, Phys. Rev. B 84, 195430 (2011)

    Article  ADS  Google Scholar 

  13. C.C. Liu, W.X. Feng, Y.G. Yao, Phys. Rev. Lett. 107, 076802 (2011)

    Article  ADS  Google Scholar 

  14. H. Pan, Z. Li, C.C. Liu, G. Zhu, Z.H. Qiao, Y.G. Yao, Phys. Rev. Lett. 112, 106802 (2014)

    Article  ADS  Google Scholar 

  15. N. Missault, P. Vasilopoulos, V. Vargiamidis, F.M. Peeters, B. Van Duppen, Phys. Rev. B 92, 195423 (2015)

    Article  ADS  Google Scholar 

  16. Q.T. Zhang, K.S. Chan, M.Q. Long, J. Phys. Condens. Matter 28, 055301 (2016)

    Article  ADS  Google Scholar 

  17. M. Ezawa, Eur. Phys. J. B 86, 139 (2013)

    Article  ADS  Google Scholar 

  18. N.D. Drummond, V. Zólyomi, V.I. Fal’ko, Phys. Rev. B 85, 075423 (2012)

    Article  ADS  Google Scholar 

  19. M. Tahir, U. Schwingenschlögl, Sci. Rep. 3, 1075 (2013)

    Article  ADS  Google Scholar 

  20. M. Wierzbicki, J. Barnaś, R. Swirkowicz, Phys. Rev. B 91, 165417 (2015)

    Article  ADS  Google Scholar 

  21. M. Ezawa, Phys. Rev. B 86, 161407 (2012)

    Article  ADS  Google Scholar 

  22. C.J. Tabert, E.J. Nicol, Phys. Rev. B 88, 085434 (2013)

    Article  ADS  Google Scholar 

  23. A. López, A. Scholz, B. Santos, J. Schliemann, Phys. Rev. B 91, 125105 (2015)

    Article  ADS  Google Scholar 

  24. F. Bechstedt, L. Matthes, P. Gori, O. Pulci, Appl. Phys. Lett. 100, 261906 (2012)

    Article  ADS  Google Scholar 

  25. L. Matthes, O. Pulci, F. Bechstedt, J. Phys. Condens. Matter 25, 395305 (2013)

    Article  Google Scholar 

  26. H.R. Bao, J.J. Guo, W.H. Liao, H.P. Zhao, Appl. Phys. A 118, 431–435 (2015)

    Article  ADS  Google Scholar 

  27. Y.L. Song, Y. Zhang, J.M. Zhang, D.B. Lu, Appl. Surf. Sci. 256, 6313–6317 (2010)

    Article  ADS  Google Scholar 

  28. H.R. Bao, W.H. Liao, J.J. Guo, X.X. Yang, H.P. Zhao, G.H. Zhou, J. Phys. D Appl. Phys. 48, 455306 (2015)

    Article  ADS  Google Scholar 

  29. Y. Liang, V. Wang, H. Mizuseki, Y.J. Kawazoe, Phys. Condens. Matter 24, 455302 (2012)

    Article  Google Scholar 

  30. X.T. An, Y.Y. Zhang, J.J. Liu, S.S. Li, New J. Phys. 14, 083039 (2012)

    Article  ADS  Google Scholar 

  31. W. Wei, T. Jacob, Phys. Rev. B 88, 045203 (2013)

    Article  ADS  Google Scholar 

  32. M. Ezawa, N. Nagaosa, Phys. Rev. B 88, 121401 (2013)

    Article  ADS  Google Scholar 

  33. Y. Lu, S.Q. Zhao, Y.C. Zhang, H. Liu, W.G. Lu, W.J. Liang, Mater. Res. Express 1, 045009 (2014)

    Article  ADS  Google Scholar 

  34. M. Farokhnezhad, M. Esmaeilzadeh, S. Ahmadi, N.J. Pournaghavi, Appl. Phys. 117, 173913 (2015)

    Article  Google Scholar 

  35. C.Y. Xu, G.F. Luo, Q.H. Liu, J.X. Zheng, Z.M. Zhang, S. Nagase, Z.X. Gao, J. Lu, Nanoscale 4, 3111–3117 (2012)

    Article  ADS  Google Scholar 

  36. J. Kang, F.M. Wu, J.B. Li, Appl. Phys. Lett. 100, 233122 (2012)

    Article  ADS  Google Scholar 

  37. B.L. Zhou, B.H. Zhou, X.W. Chen, W.H. Liao, G.H. Zhou, J. Phys. Condens. Matter 27, 465301 (2015)

    Article  ADS  Google Scholar 

  38. D. Ritwika, C. Suman, M. Arnab, J. Debnarayan, RSC Adv. 5, 41 (2015)

    Article  Google Scholar 

  39. C. Suman, J. Debnarayan, Rep. Prog. Phys. 79, 126501 (2016)

    Article  Google Scholar 

  40. C. Kamal, A. Banerjee, A. Chakrabarti, Properties of Two- dimensional Silicon versus Carbon Systems, Graphene Science Handbook, vol 15 (CRC Press, New York, 2016), pp. 221–234

  41. Y.V.L.C. Lew, J.J. Zhu, U. Schwingenschlögl, Appl. Phys. Rev. 3, 040802 (2016)

    Article  ADS  Google Scholar 

  42. H.X. Zheng, Z.F. Wang, Q.W. Shi, J. Chen, Phys. Rev. B 75, 165414 (2007)

    Article  ADS  Google Scholar 

  43. K. Wakabayashi, K.I. Sasaki, T. Nakanishi, T. Enoki, Sci. Technol. Adv. Mater. 11, 054504 (2010)

    Article  Google Scholar 

  44. J.M. Luck, Y.J. Avishai, Phys. Condens. Matter 27, 025301 (2015)

    Article  ADS  Google Scholar 

  45. M.F. Lin, F.L. Shyu, J. Phys. Soc. Jpn. 69, 3529–3532 (2000)

    Article  ADS  Google Scholar 

  46. H. Hsu, L.E. Reichl, Phys. Rev. B 76, 045418 (2007)

    Article  ADS  Google Scholar 

  47. W.H. Liao, G.H. Zhou, F. Xi, J. Appl. Phys. 104, 126105 (2008)

    Article  ADS  Google Scholar 

  48. K.I. Sasaki, K. Kato, Y. Tokura, K. Oguri, T. Sogawa, Phys. Rev. B 84, 085458 (2011)

    Article  ADS  Google Scholar 

  49. V. Derakhshan, S.A. Ketabi, A.G. Moghaddam, J. Phys. D Appl. Phys. 49, 355001 (2016)

    Article  Google Scholar 

  50. T. Kitagawa, T. Oka, A. Brataas, L. Fu, E. Demler, Phys. Rev. B 84, 235108 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenhu Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, W., Bao, H., Zhang, X. et al. Infrared to near-ultraviolet optical response for zigzag-edge silicene nanoribbons under the irradiation of an external electromagnetic field. Appl. Phys. A 124, 43 (2018). https://doi.org/10.1007/s00339-017-1469-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1469-1

Navigation