Skip to main content
Log in

Study of the Interaction of Rubidium Atoms with Sapphire Surface Using Spectroscopic Nanocells

  • Published:
Journal of Applied Spectroscopy Aims and scope

The influence of a dielectric surface on Rb atoms (D2-line) at nanometer distances has been experimentally studied. Use of a nanocell with a wedge-shaped gap filled with atomic rubidium made it possible to study the influence of atoms at distances in the range 45–150 nm from the surface of a commercial sapphire window. The 85Rb and 87Rb atomic transitions were strongly broadened at distances <130 nm from the sapphire surface due to Van-der- Waals interactions. Their frequencies shifted to the low-frequency spectral region. Use of the second-derivative method of nanocell absorption spectra made it possible to measure the Van-der-Waals interaction coefficient C3 = 1.8 ± 0.3 kHz·μm3 for the Rb D2-line. An additional red shift was shown to occur at a nanocell thickness of 65 ± 5 nm due to dipole–dipole interaction of Rb atoms as the atomic density increased. The results could be used to develop miniature submicron devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kitching, Appl. Phys. Lett., 5, Article ID 031302 (2018).

  2. J. Keaveney, Collective Atom Light Interactions in Dense Atomic Vapours, Springer (2014).

  3. M. Chevrollier, M. Fichet, M. Oria, G. Rahmat, D. Bloch, and M. Ducloy, J. Phys. II (France), 2, 631 (1992).

    Article  Google Scholar 

  4. H. Failache, S. Saltiel, M. Fichet, D. Bloch, and M. Ducloy, Phys. Rev. Lett., 83, Article ID 5467 (1999).

  5. D. Bloch and M. Ducloy, Adv. At., Mol., Opt. Phys., 50, 91 (2005).

  6. A. Laliotis, T. Passerat de Silans, I. Maurin, M. Ducloy, and D. Bloch, Nat. Commun., 5, Article ID 4364 (2014).

  7. T. Peyrot, N. Sibalic, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, I. G. Hughes, and C. S. Adams, Phys. Rev. A, 100, Article ID 022503 (2019).

  8. A. Sargsyan, T. A. Vartanyan, and D. Sarkisyan, Opt. Spektrosk., 128, 589 (2020).

    Google Scholar 

  9. A. V. Ermolaev and T. A. Vartanyan, Phys. Rev. A, 105, Article ID 013518 (2022).

  10. A. Sargsyan, A. Amiryan, Y. Pashayan-Leroy, C. Leroy, A. Papoyan, and D. Sarkisyan, Opt. Lett., 44, Article ID 5533 (2019).

  11. M. Fichet, G. Dutier, A. Yarovitsky, P. Todorov, I. Hamdi, I. Maurin, S. Saltiel, D. Sarkisyan, M. P. Gorza, D. Bloch, and M. Ducloy, Europhys. Lett., 77, Article ID 54001 (2007),

  12. A. Sargsyan, A. Papoyan, I. G. Hughes, Ch. S. Adams, and D. Sarkisyan, Opt. Lett., 42, Article ID 1476 (2017),

  13. A. Laliotis, B.-S. Lu, M. Ducloy, and D. Wilkowski, AVS Quantum Sci., 3, Article ID 043501 (2021).

  14. K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, and C. S. Adams, Phys. Rev. Lett., 112, Article ID 253201 (2014).

  15. K. A. Whittaker, J. Keaveney, I. G. Hughes, A. Sargsyan, D. Sarkisyan, and C. S. Adams, Phys. Rev. A: At., Mol., Opt. Phys., 92, Article ID 052706 (2015).

  16. V. V. Vassiliev, A. S. Zibrov, and V. L. Velichansky, Rev. Sci. Instrum., 77, Article ID 013102 (2006).

  17. A. Sargsyan, J. Appl. Spectrosc., 89, 17–23 (2022).

    Article  ADS  Google Scholar 

  18. M. Auzinsh, A. Sargsyan, A. Tonoyan, C. Leroy, R. Momier, D. Sarkisyan, and A. Papoyan, Appl. Opt., 61, 5749–5754 (2022).

    Article  ADS  Google Scholar 

  19. A. Sargsyan, E. Klinger, C. Leroy, I. G. Hughes, D. Sarkisyan, and C. S. Adams, J. Phys. B, 52, Article ID 195001 (2019).

  20. T. Peyrot, Y. R. P. Sortais, A. Browaeys, A. Sargsyan, D. Sarkisyan, J. Keaveney, I. G. Hughes, and C. S. Adams, Phys. Rev. Lett., 120, Article ID 243401 (2018).

  21. G. Dutier, S. Saltiel, D. Bloch, and M. Ducloy, J. Opt. Soc. Am. B, 20, 793 (2003).

    Article  ADS  Google Scholar 

  22. A. Sargsyan, A. Tonoyan, and D. Sarkisyan, Pisʹma Zh. Eksp. Teor. Fiz., 115, 346–352 (2022).

    Google Scholar 

  23. T. Peyrot, Ch. Beurthe, S. Coumar, M. Roulliay, K. Perronet, P. Bonnay, C. S. Adams, A. Browaeys, and Y. R. P. Sortais, Opt. Lett., 44, Article ID 1940 (2019).

  24. T. F. Cutler, W. J. Hamlyn, J. Renger, K. A. Whittaker, D. Pizzey, I. G. Hughes, V. Sandoghdar, and C. S. Adams, Phys. Rev. Appl., 14, Article ID 034054 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sargsyan.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 90, No. 4, pp. 535–540, July-August, 2023

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sargsyan, A. Study of the Interaction of Rubidium Atoms with Sapphire Surface Using Spectroscopic Nanocells. J Appl Spectrosc 90, 731–735 (2023). https://doi.org/10.1007/s10812-023-01588-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-023-01588-6

Keywords

Navigation