Skip to main content
Log in

Enhanced photocatalytic performance of Au/TiO2 nanofibers by precisely manipulating the dosage of uniform-sized Au nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The drawback of using TiO2 in photocatalytic applications lies in the wide band gap and high recombination rate of charge carriers. To solve the above problems, modification of TiO2 with Au nanoparticles (NPs) has received considerable attention. Here, TiO2 nanofibers uniformly deposited with Au NPs which have a narrow size distribution (16 nm) were synthesized. We demonstrate that the photocatalytic performance of Au/TiO2 heterostructured nanofibers can be effectively enhanced under UV and visible light irradiation by manipulating the dosage of decorated Au NPs. The effect of metal dosage on the photocatalytic performance has been systematically investigated. The enhanced photocatalytic properties are ascribed to the increase of visible light absorption from the Au NP’s surface and the enhancement of separation of electron–hole charge pairs at the interface of Au/TiO2 junctions. Besides, the decrease of photoactivity with more addition of Au NPs is due to the fact that redundant Au NPs reduce the photon flux reaching the TiO2 surface and also act as recombination centers for electron–hole pairs. The present work provides guidance toward the fabrication of more efficient Au/TiO2 photocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Chem. Rev. 114(19), 9987–10043 (2014)

    Article  Google Scholar 

  2. P. Zhang, T. Wang, J. Gong, Adv. Mater. 27(36), 5328–5342 (2015)

    Article  Google Scholar 

  3. H. Li, Y. Zhou, W. Tu, J. Ye, Z. Zou, Adv. Funct. Mater. 25(7), 998–1013 (2015)

    Article  Google Scholar 

  4. M. Ge, C. Cao, J. Huang, S. Li, Z. Chen, K. Zhang, S.S. Al-Deyab, Y. Lai, J. Mater. Chem. A 4(18), 6772–6801 (2016)

    Article  Google Scholar 

  5. X. Wang, Z. Li, J. Shi, Y. Yu, Chem. Rev. 114(19), 9346–9384 (2014)

    Article  Google Scholar 

  6. Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Adv. Mater. 27(16), 2557–2582 (2015)

    Article  Google Scholar 

  7. J. Tian, Z. Zhao, A. Kumar, R.I. Boughton, H. Liu, Chem. Soc. Rev. 43(20), 6920–6937 (2014)

    Article  Google Scholar 

  8. R. Jiang, B. Li, C. Fang, J. Wang, Adv. Mater. 26(31), 5274–5309 (2014)

    Article  Google Scholar 

  9. M. Dahl, Y. Liu, Y. Yin, Chem. Rev. 114(19), 9853–9889 (2014)

    Article  Google Scholar 

  10. S.B. Rawal, H.J. Kim, W.I. Lee, Appl. Catal. B Environ. 142–143, 458–464 (2013)

    Article  Google Scholar 

  11. S.T. Kochuveedu, Y.H. Jang, D.H. Kim, Chem. Soc. Rev. 42(21), 8467–8493 (2013)

    Article  Google Scholar 

  12. C. Wang, D. Astruc, Chem. Soc. Rev. 43(2), 7188–7216 (2014)

    Article  Google Scholar 

  13. J. Lu, P. Zhang, A. Li, F. Su, T. Wang, Y. Liu, J. Gong, Chem. Commun. 49(52), 5817–5819 (2013)

    Article  Google Scholar 

  14. Z. Zhang, A. Li, S. Cao, M. Bosman, S. Li, C. Xue, Nanoscale 6(10), 5217–5222 (2014)

    Article  ADS  Google Scholar 

  15. Q. Zhang, R. Li, Z. Li, A. Li, S. Wang, Z. Liang, S. Liao, C. Li, J. Catal. 337, 36–44 (2016)

    Article  Google Scholar 

  16. C. Clavero, Nat. Photonics 8(2), 95–103 (2014)

    Article  ADS  Google Scholar 

  17. X. Wang, R. Long, D. Liu, D. Yang, C. Wang, Y. Xiong, Nano Energy 24, 87–93 (2016)

    Article  Google Scholar 

  18. A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49(4), 1743–1754 (2014)

    Article  ADS  Google Scholar 

  19. A. Bumajdad, M. Madkour, Phys. Chem. Chem. Phys. 16(16), 7146–7158 (2014)

    Article  Google Scholar 

  20. A. Gołąbiewska, A. Malankowska, M. Jarek, W. Lisowski, G. Nowaczyk, S. Jurga, A. Zaleska-Medynska, Appl. Catal. B Environ. 196, 27–40 (2016)

    Article  Google Scholar 

  21. M. Murdoch, G.I.N. Waterhouse, M.A. Nadeem, J.B. Metson, M.A. Keane, R.F. Howe, J. Llorca, H. Idriss, Nat. Chem. 3(6), 489–492 (2011)

    Google Scholar 

  22. B. Li, Y. Hao, X. Shao, H. Tang, T. Wang, J. Zhu, S. Yan, J. Catal. 329, 368–378 (2015)

    Article  Google Scholar 

  23. Y. Wen, B. Liu, W. Zeng, Y. Wang, Nanoscale 5(20), 9739–9746 (2013)

    Article  ADS  Google Scholar 

  24. V. Jovic, W. Chen, D. Sun-Waterhouse, M.G. Blackford, H. Idriss, G.I.N. Waterhouse, J. Catal. 305, 307–317 (2013)

    Article  Google Scholar 

  25. N. Cai, X. Wang, D. Guo, L. Zhu, G. Zhang, X. Duan, D. Xu, Mater. Lett. 153, 191–194 (2015)

    Article  Google Scholar 

  26. H. Xia, S. Bai, J. Hartmann, D. Wang, Langmuir 26(5), 3585–3589 (2010)

    Article  Google Scholar 

  27. D. Ding, K. Liu, S. He, C. Gao, Y. Yin, Nano Lett. 14(11), 6731–6736 (2014)

    Article  ADS  Google Scholar 

  28. D. Jiang, W. Wang, S. Sun, L. Zhang, Y. Zheng, ACS Catal. 5(2), 613–621 (2015)

    Article  Google Scholar 

  29. D. Tsukamoto, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, J. Am. Chem. Soc. 134(14), 6309–6315 (2012)

    Article  Google Scholar 

  30. M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, Y. Liu, A.C.S. Appl, Mater. Inter. 3(2), 369–377 (2011)

    Article  Google Scholar 

  31. S. Chu, A.E. Becerikli, B. Kortewille, F.E. Oropeza, J. Strunk, Int. J. Hydrogen Energ. 39(33), 18784–18792 (2014)

    Article  Google Scholar 

  32. L. Jing, Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, J. Sun, Sol. Energ. Mat. Sol. C. 90(12), 1773–1787 (2006)

    Article  Google Scholar 

  33. W. Dong, S. Reichenberger, S. Chu, P. Weide, H. Ruland, S. Barcikowski, P. Wagener, M. Muhler, J. Catal. 330, 497–506 (2015)

    Article  Google Scholar 

  34. F. Su, T. Wang, R. Lv, J. Zhang, P. Zhang, J. Lu, J. Gong, Nanoscale 5(19), 9001–9009 (2013)

    Article  ADS  Google Scholar 

  35. Y. Pu, G. Wang, K. Chang, Y. Ling, Y. Lin, B.C. Fitzmorris, C. Liu, X. Lu, Y. Tong, J.Z. Zhang, Y. Hsu, Y. Li, Nano Lett. 13(8), 3817–3823 (2013)

    Article  ADS  Google Scholar 

  36. T. Jiang, C. Jia, L. Zhang, S. He, Y. Sang, H. Li, Y. Li, X. Xu, H. Liu, Nanoscale 7(1), 209–217 (2015)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Nos. 51372140 and 51472144) and the Fundamental Research Funds of Shandong University (Grant No. 2015JC022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xinqiang Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 888 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, C., Yu, Z., Liu, H. et al. Enhanced photocatalytic performance of Au/TiO2 nanofibers by precisely manipulating the dosage of uniform-sized Au nanoparticles. Appl. Phys. A 123, 519 (2017). https://doi.org/10.1007/s00339-017-1133-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1133-9

Navigation