Skip to main content

Advertisement

Log in

Atomic Layer Deposition of ZnO on TiO2 Nanofibers for Boosted Photocatalytic Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In consideration of the urgency to replace fossil fuel-based energy sources with renewable sources, one should do much to develop efficient photocatalyst that are capable of converting solar energy into hydrogen fuel. This work describes the atomic layer deposition (ALD) of ZnO on electrospinning TiO2 nanofibers to form a 1D TiO2@ZnO heterojunction. The obtained TiO2@ZnO composite were systematically investigated to reveal their structural and morphological properties by using SEM, BET, XRD, and TEM with EDX spectroscopy. The TiO2@ZnO hybrids showed enhanced photocatalytic activity towards hydrogen production as compared to the pure TiO2 nanofibers. The optimum hydrogen production rate was reaching to 1190.9 μmol/h/g without use of any co-catalytic noble metals, which is 6.5 folds higher than that of bare TiO2 counterpart, and also better or comparable to the ever reported TiO2@ZnO photocatalysts. Based on the mechanism analysis, the Type-II heterojunction charge transfer route was responsible for the boosted performance over the TiO2@ZnO composite.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Chu S, Majumdar A (2012) Opportunities and challenges for a sustainable energy future. Nature 488:294–303

    CAS  PubMed  Google Scholar 

  2. Zhu L, Li H, Xia P, Liu Z, Xiong D (2018) Hierarchical ZnO decorated with CeO2 nanoparticles as the direct Z-scheme heterojunction for enhanced photocatalytic activity. ACS Appl Mater Interfaces 10(46):39679–39687

    CAS  PubMed  Google Scholar 

  3. Hou H, Zeng X, Zhang X (2019) Production of hydrogen peroxide through photocatalytic processes: a critical review of recent advances. Angew Chem Int Ed. https://doi.org/10.1002/anie.201911609

    Article  Google Scholar 

  4. Zhang M, Qi Y, Zhang Z (2019) AgBr/BiOBr nano-heterostructure-decorated polyacrylonitrile nanofibers: a recyclable high-performance photocatalyst for dye degradation under visible-light irradiation. Polymers 11:1718

    CAS  PubMed Central  Google Scholar 

  5. Zhu L, Li H, Xu Q, Xiong D, Xia P (2020) High-efficient separation of photoinduced carriers on double Z-scheme heterojunction for superior photocatalytic CO2 reduction. J Colloid Interface Sci 564:303–312

    CAS  PubMed  Google Scholar 

  6. Zhang P, Zhang S, Wan D, Zhang P, Zhang Z, Shao G (2020) Multilevel polarization-fields enhanced capture and photocatalytic conversion of particulate matter over flexible Schottky-junction nanofiber membranes. J Hazard Mater 395:122639

    CAS  PubMed  Google Scholar 

  7. Sharma S, Ghoshal SK (2015) Hydrogen the future transportation fuel: from production to applications. Renew Sustain Energy Rev 43:1151–1158

    CAS  Google Scholar 

  8. Wang Y, Vogel A, Sachs M, Sprick RS, Wilbraham L, Moniz SJ, Godin R, Zwijnenburg MA, Durrant JR, Cooper AI (2019) Current understanding and challenges of solar-driven hydrogen generation using polymeric photocatalysts. Nat Energy 4:746–760

    CAS  Google Scholar 

  9. Ahmad H, Kamarudin S, Minggu L, Kassim M (2015) Hydrogen from photo-catalytic water splitting process: a review. Renew Sustain Energy Rev 43:599–610

    CAS  Google Scholar 

  10. Xu S, Fu D, Song K, Wang L, Yang Z, Yang W, Hou H (2018) One-dimensional WO3/BiVO4 heterojunction photoanodes for efficient photoelectrochemical water splitting. Chem Eng J 349:368–375

    CAS  Google Scholar 

  11. Cai Q, Liu Z, Li J, Han C, Tong Z (2019) Ga-doped AgInS2 modified with Co-Pi Co-catalyst for efficient photoelectrochemical water splitting. Catal Lett 150:1089–1097

    Google Scholar 

  12. Zhao C, Li Q, Xie Y, Zhang L, Xiao X, Wang D, Jiao Y, Price CAH, Jiang B, Liu J (2020) Three-dimensional assemblies of carbon nitride tubes as nanoreactors for enhanced photocatalytic hydrogen production. J Mater Chem A 8:305–312

    CAS  Google Scholar 

  13. Zhu Y, Lv C, Yin Z, Ren J, Yang X, Dong CL, Liu H, Cai R, Huang YC, Theis W (2020) A [001]-oriented Hittorf's phosphorus nanorods/polymeric carbon nitride heterostructure for boosting wide-spectrum-responsive photocatalytic hydrogen evolution from pure water. Angew Chem 132:878–883

    Google Scholar 

  14. Liu Y, Zhang Z, Fang Y, Liu B, Huang J, Miao F, Bao Y, Dong B (2019) IR-Driven strong plasmonic-coupling on Ag nanorices/W18O49 nanowires heterostructures for photo/thermal synergistic enhancement of H2 evolution from ammonia borane. Appl Catal B 252:164–173

    CAS  Google Scholar 

  15. Dong D, Yan C, Huang J, Lu N, Wu P, Wang J, Zhang Z (2019) An electron-donating strategy to guide the construction of MOF photocatalysts toward co-catalyst-free highly efficient photocatalytic H2 evolution. J Mater Chem A 7:24180–24185

    CAS  Google Scholar 

  16. Kumaravel V, Mathew S, Bartlett J, Pillai SC (2019) Photocatalytic hydrogen production using metal doped TiO2: a review of recent advances. Appl Catal B 244:1021–1064

    CAS  Google Scholar 

  17. Ren X, Hou H, Liu Z, Gao F, Zheng J, Wang L, Li W, Ying P, Yang W, Wu T (2016) Shape-enhanced photocatalytic activities of thoroughly mesoporous ZnO nanofibers. Small 12:4007–4017

    CAS  PubMed  Google Scholar 

  18. Zhang S, Liu Z, Ruan M, Guo Z, Lei E, Zhao W, Zhao D, Wu X, Chen D (2020) Enhanced piezoelectric-effect-assisted photoelectrochemical performance in ZnO modified with dual cocatalysts. Appl Catal B 262:118279

    CAS  Google Scholar 

  19. Li Y, Yang M, Xing Y, Liu X, Yang Y, Wang X, Song S (2017) Preparation of carbon-rich g-C3N4 nanosheets with enhanced visible light utilization for efficient photocatalytic hydrogen production. Small 13:1701552

    Google Scholar 

  20. Liu Z, Lu X (2018) Multifarious function layers photoanode based on g-C3N4 for photoelectrochemical water splitting. Chin J Catal 39(9):1527–1533

    CAS  Google Scholar 

  21. Zhu Y, Li J, Cao J, Lv C, Huang G, Zhang G, Xu Y, Zhang S, Meng P, Zhan T (2020) Phosphorus-doped polymeric carbon nitride nanosheets for enhanced photocatalytic hydrogen production. APL Mater 8(4):041108

    CAS  Google Scholar 

  22. Zhang S, Liu X, Liu C, Luo S, Wang L, Cai T, Zeng Y, Yuan J, Dong W, Pei Y (2018) MoS2 quantum dot growth induced by S vacancies in a ZnIn2S4 monolayer: atomic-level heterostructure for photocatalytic hydrogen production. ACS Nano 12:751–758

    CAS  PubMed  Google Scholar 

  23. Feng C, Chen Z, Hou J, Li J, Li X, Xu L, Sun M, Zeng R (2018) Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem Eng J 345:404–413

    CAS  Google Scholar 

  24. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38

    CAS  PubMed  Google Scholar 

  25. Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C 1:1–21

    CAS  Google Scholar 

  26. Meng A, Zhang L, Cheng B, Yu J (2019) Dual cocatalysts in TiO2 photocatalysis. Adv Mater 31:1807660

    Google Scholar 

  27. Huang Q, Ye J, Si H, Yang B, Tao T, Zhao Y, Chen M, Yang H (2019) Differences of characteristics and performance with Bi3+ and Bi2O3 doping over TiO2 for photocatalytic oxidation under visible light. Catal Lett 150:1098–1110

    Google Scholar 

  28. Zhang S, Liu Z, Chen D, Guo Z, Ruan M (2020) Oxygen vacancies engineering in TiO2 homojunction/ZnFe-LDH for enhanced photoelectrochemical water oxidation. Chem Eng J 395:125101

    CAS  Google Scholar 

  29. Hou H, Zeng X, Zhang X (2020) 2D/2D heterostructured photocatalyst: rational design for energy and environmental applications. Sci Chin Mater. https://doi.org/10.1007/s40843-019-1256-0

    Article  Google Scholar 

  30. Zhu Y, Li J, Dong C-L, Ren J, Huang Y-C, Zhao D, Cai R, Wei D, Yang X, Lv C (2019) Red phosphorus decorated and doped TiO2 nanofibers for efficient photocatalytic hydrogen evolution from pure water. Appl Catal B 255:117764

    CAS  Google Scholar 

  31. Hou H, Zhang X (2020) Rational design of 1D/2D heterostructured photocatalyst for energy and environmental applications. Chem Eng J 395:125030

    CAS  Google Scholar 

  32. Hou H, Shang M, Gao F, Wang L, Liu Q, Zheng J, Yang Z, Yang W (2016) Highly efficient photocatalytic hydrogen evolution in ternary hybrid TiO2/CuO/Cu thoroughly mesoporous nanofibers. ACS Appl Mater Interfaces 8:20128–20137

    CAS  PubMed  Google Scholar 

  33. Hou H, Shao G, Yang W, Wong W-Y (2020) One-dimensional mesoporous inorganic nanostructures and their applications in energy, sensor, catalysis and adsorption. Prog Mater Sci 113:100671

    CAS  Google Scholar 

  34. Hou H, Wang L, Gao F, Wei G, Tang B, Yang W, Wu T (2014) General strategy for fabricating thoroughly mesoporous nanofibers. J Am Chem Soc 136:16716–16719

    CAS  PubMed  Google Scholar 

  35. Shang M, Hou H, Gao F, Wang L, Yang W (2017) Mesoporous Ag@TiO2 nanofibers and their photocatalytic activity for hydrogen evolution. RSC Adv 7:30051–30059

    CAS  Google Scholar 

  36. Hou H, Gao F, Shang M, Wang L, Zheng J, Liu Q, Yang Z, Xu J, Yang W (2016) Enhanced visible-light responsive photocatalytic activity of N-doped TiO2 thoroughly mesoporous nanofibers. J Mater Sci Mater Electron 28:3796–3805

    Google Scholar 

  37. Hou H, Gao F, Wang L, Shang M, Yang Z, Zheng J, Yang W (2016) Superior thoroughly mesoporous ternary hybrid photocatalysts of TiO2/WO3/g-C3N4 nanofibers for visible-light-driven hydrogen evolution. J Mater Chem A 4:6276–6281

    CAS  Google Scholar 

  38. Yang Y, Li X, Lu C, Huang W (2019) G-C3N4 nanosheets coupled with TiO2 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity for hydrogen production. Catal Lett 149:2930–2939

    CAS  Google Scholar 

  39. Kwiatkowski M, Chassagnon R, Heintz O, Geoffroy N, Skompska M, Bezverkhyy I (2017) Improvement of photocatalytic and photoelectrochemical activity of ZnO/TiO2 core/shell system through additional calcination: Insight into the mechanism. Appl Catal B 204:200–208

    CAS  Google Scholar 

  40. Xiang Q, Yu J, Jaroniec M (2012) Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J Am Chem Soc 134:6575–6578

    CAS  PubMed  Google Scholar 

  41. Fang J, Xu L, Zhang Z, Yuan Y, Cao S, Wang Z, Yin L, Liao Y, Xue C (2013) Au@TiO2-CdS ternary nanostructures for efficient visible-light-driven hydrogen generation. ACS Appl Mater Interfaces 5:8088–8092

    CAS  PubMed  Google Scholar 

  42. Pérez-Larios A, Lopez R, Hernández-Gordillo A, Tzompantzi F, Gómez R, Torres-Guerra LM (2012) Improved hydrogen production from water splitting using TiO2-ZnO mixed oxides photocatalysts. Fuel 100:139–143

    Google Scholar 

  43. Guo S, Han S, Mao H, Dong S, Wu C, Jia L, Chi B, Pu J, Li J (2014) Structurally controlled ZnO/TiO2 heterostructures as efficient photocatalysts for hydrogen generation from water without noble metals: the role of microporous amorphous/crystalline composite structure. J Power Sour 245:979–985

    CAS  Google Scholar 

  44. Wang Y, Zheng YZ, Lu S, Tao X, Che Y, Chen JF (2015) Visible-light-responsive TiO2-coated ZnO: I nanorod array films with enhanced photoelectrochemical and photocatalytic performance. ACS Appl Mater Interfaces 7:6093–6101

    CAS  PubMed  Google Scholar 

  45. Wang C-C, Chou C-Y, Yi S-R, Chen H-D (2019) Deposition of heterojunction of ZnO on hydrogenated TiO2 nanotube arrays by atomic layer deposition for enhanced photoelectrochemical water splitting. Int J Hydrogen Energy 44:28685–28697

    CAS  Google Scholar 

  46. Baran Aydın E, Sığırcık G (2019) Preparations of different ZnO nanostructures on TiO2 nanotube via electrochemical method and its application in hydrogen production. Int J Hydrogen Energy 44:11488–11502

    Google Scholar 

  47. Zhou T, Wang J, Chen S, Bai J, Li J, Zhang Y, Li L, Xia L, Rahim M, Xu Q, Zhou B (2020) Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl Catal B 267:118599

    CAS  Google Scholar 

  48. Hussein AM, Mahoney L, Peng R, Kibombo H, Wu C-M, Koodali RT, Shende R (2013) Mesoporous coupled ZnO/TiO2 photocatalyst nanocomposites for hydrogen generation. J Renew Sustain Energy 5:033118

    Google Scholar 

  49. Xie M-Y, Su K-Y, Peng X-Y, Wu R-J, Chavali M, Chang W-C (2017) Hydrogen production by photocatalytic water-splitting on Pt-doped TiO2–ZnO under visible light. J Taiwan Inst Chem Eng 70:161–167

    CAS  Google Scholar 

  50. Al-Mayman SI, Al-Johani MS, Mohamed MM, Al-Zeghayer YS, Ramay SM, Al-Awadi AS, Soliman MA (2017) TiO2-ZnO photocatalysts synthesized by sol–gel auto-ignition technique for hydrogen production. Int J Hydrogen Energy 42:5016–5025

    CAS  Google Scholar 

  51. Wang Z, Hu T, He H, Fu Y, Zhang X, Sun J, Xing L, Liu B, Xue X (2018) Enhanced H2 production of TiO2/ZnO nanowires Co-using solar and mechanical energy through piezo-photocatalytic effect. ACS Sustain Chem Eng 6:10162–10172

    CAS  Google Scholar 

  52. Liang Z, Hou H, Song K, Zhang K, Fang Z, Gao F, Wang L, Chen D, Yang W, Zeng H (2018) Boosting the photoelectrochemical activities of all-inorganic perovskite SrTiO3 nanofibers by engineering homo/hetero junctions. J Mater Chem A 6:17530–17539

    CAS  Google Scholar 

  53. Liang Z, Hou H, Fang Z, Gao F, Wang L, Chen D, Yang W (2019) Hydrogenated TiO2 nanorod arrays decorated with carbon quantum dots toward efficient photoelectrochemical water splitting. ACS Appl Mater Interfaces 11(21):19167–19175

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by State Grid Zhejiang Electric Power Co., LTD Double Innovation Project (Grant No. B711JZ190006) and State Grid Co., Headquarters Science and Technology Project (Grant No. 5400-201919487A).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanfen Yuan or Huilin Hou.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1897 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Li, P., Zhu, Y. et al. Atomic Layer Deposition of ZnO on TiO2 Nanofibers for Boosted Photocatalytic Hydrogen Production. Catal Lett 151, 78–85 (2021). https://doi.org/10.1007/s10562-020-03276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03276-y

Keywords

Navigation