Skip to main content
Log in

Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

On the basis of the modified strain gradient theory, the present paper deals with the theoretical analysis of the free vibration of coupled double-FGM viscoelastic nanoplates by Kelvin–Voigt visco-Pasternak medium. To establish static equilibrium of atoms on the each nanoplate surface, the effects of the surface layers are considered. The properties of material in the thickness direction vary according to the power low distribution. Kirchhoff plate assumption and Hamilton’s variational principle are employed to achieve the partial differential equations for three different cases of vibration (out-of-phase, in-phase, and one nanoplate of the system being stationary) and corresponding boundary conditions. Navier’s approach which satisfies the simply supported boundary conditions applied to analytically investigate the size effect on the natural frequencies of double-FGM viscoelastic nanoplate systems. Numerical studies are carried out to illustrate the influence of viscoelastic damping structural of the nanoplates, damping coefficient of the visco-Pasternak medium, independent length scale parameter, aspect ratio, surface properties, and other factors on the frequency behavior system. Some numerical results of this research illustrate that the frequencies may increase or decrease with respect to the sign of the surface properties of FGMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.C. Eringen, Int. J. Eng. Sci. 10, 425 (1972)

    Article  Google Scholar 

  2. A.C. Eringen, J. Appl. Phys. 54, 4703 (1983)

    Article  ADS  Google Scholar 

  3. W.T. Koiter, Proc. K. Ned. Akad. van Wet. Ser. B 67, 17 (1964)

    MathSciNet  Google Scholar 

  4. R.A. Toupin, Arch. Ration. Mech. Anal. 17, (1964)

  5. R.D. Mindlin, Arch. Ration. Mech. Anal. 16, (1964)

  6. R.D. Mindlin, N.N. Eshel, Int. J. Solids Struct 4, 109 (1968)

    Article  Google Scholar 

  7. N.A. Fleck, J.W. Hutchinson, J. Mech. Phys. Solids 49, 2245 (2001)

    Article  ADS  Google Scholar 

  8. F. Yang, A.C.M. Chong, D.C.C. Lam, P. Tong, Int. J. Solids Struct. 39, 2731 (2002)

    Article  Google Scholar 

  9. D.C.C. Lam, F. Yang, A.C.M. Chong, J. Wang, P. Tong, J. Mech. Phys. Solids 51, 1477 (2003)

    Article  ADS  Google Scholar 

  10. S.C. Pradhan, J.K. Phadikar, J. Sound Vib. 325, 206 (2009)

    Article  ADS  Google Scholar 

  11. T. Aksencer, M. Aydogdu, Phys. E Low Dim. Syst. Nanostruct. 44, 1752 (2012)

    Article  ADS  Google Scholar 

  12. M. Shaat, F.F. Mahmoud, X.-L. Gao, A.F. Faheem, Int. J. Mech. Sci. 79, 31 (2014)

    Article  Google Scholar 

  13. M.R. Nami, M. Janghorban, Compos. Struct. 111, 349 (2014)

    Article  Google Scholar 

  14. M. Hosseini, M. Bahreman, A. Jamalpoor, Acta Mech. (2016)

  15. B. Zhang, Y. He, D. Liu, L. Shen, J. Lei, Appl. Math. Model 39, 3814 (2015)

    Article  MathSciNet  Google Scholar 

  16. A.G. Shenas, P. Malekzadeh, Thin Walled Struct. 106, 294 (2016)

    Article  Google Scholar 

  17. F. Ebrahimy, S.H.S. Hosseini Appl. Phys. A 122, 922 (2016)

    Article  ADS  Google Scholar 

  18. A. Li, S. Zhou, L. Qi, Appl. Phys. A 122, 918 (2016)

    Article  ADS  Google Scholar 

  19. Y. Lei, S. Adhikari, M.I. Friswell, Int. J. Eng. Sci. 6667, 1 (2013)

    Article  Google Scholar 

  20. S. Pouresmaeeli, E. Ghavanloo, S.A. Fazelzadeh, Compos. Struct. 96, 405 (2013)

    Article  Google Scholar 

  21. D. Karličić, P. Kozić, R. Pavlović, Compos. Struct. 115, 89 (2014)

    Article  Google Scholar 

  22. A. Ghorbanpour Arani, M. Shokravi, Proc. Inst. Mech. Eng. Part N J. Nanoeng. Nanosyst. 1740349914529102 (2014)

  23. S.H. Hashemi, H. Mehrabani, A. Ahmadi-Savadkoohi, Compos. Part B Eng. 78, 377 (2015)

    Article  Google Scholar 

  24. M. Bennoun, M.S.A. Houari, A. Tounsi, Mech, Adv. Mater. Struct. 23, 423 (2016)

    Google Scholar 

  25. Y. Beldjelili, A. Tounsi, S.R. Mahmoud, SMART Struct. Syst. 18, 755 (2016)

    Article  Google Scholar 

  26. M. Zidi, A. Tounsi, M.S.A. Houari, E.A. Adda Bedia, O. Anwar Bég, Aerosp. Sci. Technol. 34, 24 (2014)

    Article  Google Scholar 

  27. F. Bourada, K. Amara, A. Tounsi, Steel. Compos. Struct. 21, 1287 (2016)

    Article  Google Scholar 

  28. S.A. Yahia, H.A. Atmane, M.S.A. Houari, A. Tounsi, Struct. Eng. Mech. 53, 1143 (2015)

    Article  Google Scholar 

  29. Z. Belabed, M. S. Ahmed Houari, A. Tounsi, S.R. Mahmoud, O. Anwar Bég, Compos. Part B Eng. 60, 274 (2014)

    Article  Google Scholar 

  30. A.A. Bousahla, M.S.A. Houari, A. Tounsi, E.A. Adda Bedia, Int. J. Comput. Methods 11, 1350082 (2014)

    Article  MathSciNet  Google Scholar 

  31. H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.AA. Bedia, J. Eng. Mech. 140, 374 (2014)

    Article  Google Scholar 

  32. A. Mahi, E.A. Adda Bedia, A. Tounsi, Appl. Math. Model 39, 2489 (2015)

    Article  MathSciNet  Google Scholar 

  33. A. Hamidi, M.S.A. Houari, S.R. Mahmoud, A. Tounsi, Steel. Compos. Struct. 18, 235 (2015)

    Article  Google Scholar 

  34. M.S.A. Houari, A. Tounsi, A. Bessaim, S. Hassan, Steel. Compos. Struct. 2, 257 (2016)

    Article  Google Scholar 

  35. A. Tounsi, M.S.A. Houari, A. Bessaim, Struct. Eng. Mech. 60, 547 (2016)

    Article  Google Scholar 

  36. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, Steel. Compos. Struct. 18, 409 (2015)

    Article  Google Scholar 

  37. A. Tounsi, M.S.A. Houari, S. Benyoucef, E. A. Adda Bedia, Aerosp. Sci. Technol. 24, 209 (2013)

    Article  Google Scholar 

  38. B. Bouderba, M.S.A. Houari, A. Tounsi, Steel. Compos. Struct. 14, 85 (2013)

    Article  Google Scholar 

  39. R. Ansari, R. Gholami, M. Faghih Shojaei, V. Mohammadi, M.A. Darabi, J. Therm. Stress 36, 446 (2013)

    Article  Google Scholar 

  40. M. Salamat-talab, A. Nateghi, J. Torabi, Int. J. Mech. Sci. 57, 63 (2012)

    Article  Google Scholar 

  41. M. Mirsalehi, M. Azhari, H. Amoushahi, Aerosp. Sci. Technol. 47, 356 (2015)

    Article  Google Scholar 

  42. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, Steel. Compos. Struct. 20, 227 (2016)

    Article  Google Scholar 

  43. I. Belkorissat, M.S.A. Houari, A. Tounsi, E.A.A. Bedia, S.R. Mahmoud, Steel. Compos. Struct. 18, 1063 (2015)

    Article  Google Scholar 

  44. A. Tounsi, S. Benguediab, E.A. Adda Bedia, A. Semmah, Adv M. Zidour, Nano Res. 1, 1 (2013)

    Article  Google Scholar 

  45. A. Besseghier, H. Heireche, A.A. Bousahla, A. Tounsi, Adv A. Benzair, Nano Res. 3, 29 (2015)

    Article  Google Scholar 

  46. S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Compos. Part B Eng. 57, 21 (2014)

    Article  Google Scholar 

  47. F.L. Chaht, A. Kaci, M.S.A. Houari, A. Tounsi, O.A. Beg, S.R. Mahmoud, Steel. Compos. Struct. 18, 425 (2015)

    Article  Google Scholar 

  48. M. Ahouel, M.S.A. Houari, E.A.A. Bedia, A. Tounsi, Steel. Compos. Struct. 20, 963 (2016)

    Article  Google Scholar 

  49. A. Zemri, M.S.A. Houari, A.A. Bousahla, A. Tounsi, Struct. Eng. Mech. 54, 693 (2015)

    Article  Google Scholar 

  50. K.S. Al-Basyouni, A. Tounsi, S.R. Mahmoud, Compos. Struct. 125, 621 (2015)

    Article  Google Scholar 

  51. M. Gurtin, A. Ian Murdoch, Arch. Ration. Mech. Anal. 57, (1975)

  52. M.E. Gurtin, A. Ian Murdoch, Int. J. Solids Struct. 14, 431 (1978)

    Article  Google Scholar 

  53. S. Hosseini-Hashemi, R. Nazemnezhad, H. Rokni, Eur. J. Mech. A Solids 52, 44 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  54. M.A. Eltaher, F.F. Mahmoud, A.E. Assie, E.I. Meletis, Appl. Math. Comput. 224, 760 (2013)

    MathSciNet  Google Scholar 

  55. R. Nazemnezhad, S. Hosseini-Hashemi, Meccanica 50, 1027 (2014)

    Article  Google Scholar 

  56. M. Ghadiri, M. Soltanpour, A. Yazdi, M. Safi, Appl. Phys. A 122, 520 (2016)

    Article  ADS  Google Scholar 

  57. H.-L. Lee, W.-J. Chang, J. Appl. Phys. 108, 93503 (2010)

    Article  ADS  Google Scholar 

  58. A. Ghorbanpour Arani, M.A. Roudbari, Thin Solid Films 542, 232 (2013)

    Article  ADS  Google Scholar 

  59. R. Bahaadini, M. Hosseini, A. Jamalpoor, Phys. B Condens. Mater. (2017). doi:10.1016/j.physb.2016.12.033

    Google Scholar 

  60. A. Assadi, Appl. Math. Model. 37, 3575 (2013)

    Article  MathSciNet  Google Scholar 

  61. R. Ansari, R. Gholami, Acta Astronaut. 118, 72 (2016)

    Article  ADS  Google Scholar 

  62. P. Malekzadeh, M.R. Golbahar Haghighi, M. Shojaee, Thin Walled Struct. 78, 48 (2014)

    Article  Google Scholar 

  63. M. Hosseini, A. Jamalpoor, A. Fath, Meccanica 1 (2016). doi:10.1007/s11012-016-0469-0

  64. M. Hosseini, M. Bahreman, A. Jamalpoor, Microsyst. Technol. 1 (2016). doi:10.1007/s00542-016-3133-7

  65. J. M. Seelig, W.H. Hoppmann, J. Acoust. Soc. Am. 36, 93 (1964)

  66. J.M. Seelig, W.H. Hoppmann, J. Appl. Mech 31, 621 (1964)

    Article  ADS  Google Scholar 

  67. A. Jamalpoor, M. Hosseini, Compos. Part B Eng. 75, 53 (2015)

    Article  Google Scholar 

  68. S.R. Asemi, A. Farajpour, Micro. Nano Lett. 9, 280 (2014)

    Article  Google Scholar 

  69. M. Hosseini, A. Jamalpoor, J. Therm. Stress 38, 1428 (2015)

    Article  Google Scholar 

  70. J.N. Reddy, Energy Principles and Variational Methods in Applied Mechanics (Wiley, Oxford, 2002)

    Google Scholar 

  71. K.F. Wang, B.L. Wang, Phys. E Low Dim. Syst. Nanostruct. 44, 448 (2011)

    Article  ADS  Google Scholar 

  72. R. Ansari, M.A. Ashrafi, T. Pourashraf, S. Sahmani. Acta Astronaut 109, 42 (2015)

    Article  ADS  Google Scholar 

  73. P. Lu, L.H. He, H.P. Lee, C. Lu, Int. J. Solids Struct. 43, 4631 (2006)

    Article  Google Scholar 

  74. A. Jamalpoor, A. Ahmadi-Savadkoohi, S. Hosseini-Hashemi, Smart. Mater. Struct. 25, 105035 (2016)

    Article  ADS  Google Scholar 

  75. H.V. Vu, A.M. Ordóñez, B.H. Karnopp, J. Sound Vib. 229, 807 (2000)

    Article  ADS  Google Scholar 

  76. M. Hosseini, A. Jamalpoor, M. Bahreman, Acta Astronaut. 129, 400 (2016)

    Article  ADS  Google Scholar 

  77. A. Jamalpoor, A. Ahmadi-Savadkoohi, M. Hossein, S. Hosseini-Hashemi. Eur. J. Mech. A Solids (2016). doi:10.1016/j.euromechsol.2016.12.002

    Google Scholar 

  78. B. Akgöz, Ö. Civalek, Meccanica 48, 863 (2012)

    Article  Google Scholar 

  79. B. Akgöz, Ö. Civalek, Acta Mech. 226, 2277 (2015)

    Article  MathSciNet  Google Scholar 

  80. H.-T. Thai, D.-H. Choi, Compos. Struct. 95, 142 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Jamalpoor.

Ethics declarations

Conflict of interest

We have no conflict of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamalpoor, A., Kiani, A. Vibration analysis of bonded double-FGM viscoelastic nanoplate systems based on a modified strain gradient theory incorporating surface effects. Appl. Phys. A 123, 201 (2017). https://doi.org/10.1007/s00339-017-0784-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-0784-x

Keywords

Navigation