Skip to main content
Log in

Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nonlinear electroelastic vibration behavior of viscoelastic nanoplates is investigated based on nonlocal elasticity theory. Employing nonlinear strain–displacement relations, the geometrical nonlinearity is modeled while governing equations are derived through Hamilton’s principle and they are solved applying semi-analytical generalized differential quadrature (GDQ) method. Eringen’s nonlocal elasticity theory takes into account the effect of small size, which enables the present model to become effective in the analysis and design of nanosensors and nanoactuators. Based on Kelvin–Voigt model, the influence of the viscoelastic coefficient is also discussed. It is demonstrated that the GDQ method has high precision and computational efficiency in the vibration analysis of viscoelastic nanoplates. The good agreement between the results of this article and those available in literature validated the presented approach. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as electric voltage, small-scale effects, van der Waals interaction, Winkler and Pasternak elastic coefficients, the viscidity and aspect ratio of the nanoplate on its nonlinear vibrational characteristics. It is explicitly shown that the electroelastic vibration behavior of viscoelastic nanoplates is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of viscoelastic nanoplates which are fundamental elements in nanoelectromechanical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C.L. Kane, E.J. Mele, Size, shape, and low energy electronic structure of carbon nanotubes. Phys. Rev. Lett. 78, 1932–1935 (1997)

    Article  ADS  Google Scholar 

  2. A. Maiti, A. Svizhenko, M.P. Anantram, Electronic transport through carbon nanotubes: effects of structural deformation and tube, chirality. Phys. Rev. Lett. 88, 126805 (2002)

    Article  ADS  Google Scholar 

  3. Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. Mater. Today 7(6), 26–33 (2004)

    Article  Google Scholar 

  4. A.P. Chauhan, D.G. Ashwell, Small and large amplitude free vibrations square shallow shells. Int. J. Mech. Sci. 11, 337–350 (1969)

    Article  MATH  Google Scholar 

  5. S.C. Pradhan, A. Kumar, Vibration analysis of orthotropic graphene sheets embedded in Pasternak elastic medium using nonlocal elasticity theory and differential quadrature method. Comput. Mater. Sci. 50, 239–245 (2010)

    Article  Google Scholar 

  6. S.C. Pradhan, J.K. Phadikar, Nonlocal elasticity theory for vibration of nanoplates. J. Sound Vib. 325, 206–223 (2009)

    Article  ADS  MATH  Google Scholar 

  7. T. Murmu, S.C. Pradhan, Vibration analysis of nano-single-layered graphene sheets embedded in elastic medium based on nonlocal elasticity theory. J. Appl. Phys. 105, 064319 (2009)

    Article  ADS  Google Scholar 

  8. R. Ansari, B. Arash, H. Rouhi, Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity. Compos. Struct. 93, 2419–2429 (2011)

    Article  Google Scholar 

  9. F. Scarpa, S. Adhikari, R. Chowdhury, The transverse elasticity of bilayer graphene. Phys. Lett. A 374, 2053–2057 (2010)

    Article  ADS  Google Scholar 

  10. R.K. Bhangale, N. Ganesan, Static analysis of simply supported functionally graded and layered magneto-electro-elastic plates. Int. J. Solids Struct. 43, 3230–3253 (2006)

    Article  MATH  Google Scholar 

  11. L.-L. Ke, Y.-S. Wang, J. Yang, S. Kitipornchai, Free vibration of size-dependent magneto-electro-elastic nanoplates based on the nonlocal theory. Acta Mech. Sin. 30, 516–525 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Y.S. Li, Z.Y. Cai, S.Y. Shi, Buckling and free vibration of magnetoelectroelastic nanoplate based on nonlocal theory. Compos. Struct. 111, 522–529 (2014)

    Article  Google Scholar 

  13. S.R. Asemi, A. Farajpour, Vibration characteristics of double-piezoelectric-nanoplate-systems. Micro Nano Lett. 9, 280–285 (2014)

    Article  Google Scholar 

  14. Belabed et al., An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos. B 60, 274–283 (2014)

    Article  Google Scholar 

  15. A. Yahia et al., Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct. Eng. Mech. 53(6), 1143–1165 (2015)

    Article  Google Scholar 

  16. A. Mahi, E.A. Adda Bedia, A. Tounsi, A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic functionally graded, sandwich and laminated composite plates. Appl. Math. Model. 39, 2489–2508 (2015)

    Article  MathSciNet  Google Scholar 

  17. M. Bennoun, M.S.A. Houari, A. Tounsi, A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech. Adv. Mater. Struct. 23(4), 423–431 (2016)

    Article  Google Scholar 

  18. Bousahla et al., A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates. Int. J. Comput. Methods 11(6), 1350082 (2014)

    Article  MathSciNet  Google Scholar 

  19. A.A. Meziane et al., An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J. Sandw. Struct. Mater. 16(3), 293–318 (2014)

    Article  MathSciNet  Google Scholar 

  20. H. Bellifa, K.H. Benrahou, L. Hadji, M.S.A. Houari, Tounsi, A Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position. J. Braz. Soc. Mech. Sci. Eng. 38, 265–275 (2016)

    Article  Google Scholar 

  21. Bouderba et al., Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations. Steel Compos. Struct. 14(1), 85–104 (2013)

    Article  Google Scholar 

  22. A. Hamidi, M.S.A. Houari, S.R. Mahmoud, A. Tounsi, A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos. Struct. 18(1), 235–253 (2015)

    Article  Google Scholar 

  23. H. Hebali, A. Tounsi, M.S.A. Houari, A. Bessaim, E.A.A. Bedia, New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J. Eng. Mech. 140, 374–383 (2014)

    Article  Google Scholar 

  24. M. Zidi, A. Tounsi, M.S.A. Houari, E.A.A. Bedia, O. Anwar Beg, Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp. Sci Technol. 34, 24–34 (2014)

    Article  Google Scholar 

  25. A. Tounsi, M.S.A. Houari, S. Benyoucef, E.A.A. Bedia, A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp. Sci Technol. 24, 209–220 (2013)

    Article  Google Scholar 

  26. Belkorissat et al., On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable models. Steel Compos. Struct. 18(4), 1063–1081 (2015)

    Article  Google Scholar 

  27. F. Bounouara, K.H. Benrahou, I. Belkorissat, A. Tounsi, A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos. Struct. 20(2), 227–249 (2016)

    Article  Google Scholar 

  28. M. Bourada, A. Kaci, M.S.A. Houari, A. Tounsi, A new simple shear and normal deformations theory for functionally graded beams. Steel Compos. Struct. 18, 409–423 (2015)

    Article  Google Scholar 

  29. Tounsi et al., Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv. Nano Res. 1(1), 1–11 (2013)

    Article  MathSciNet  Google Scholar 

  30. Besseghier et al., Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Adv. Nano Res. 3(1), 29–37 (2015)

    Article  Google Scholar 

  31. L. Chaht et al., Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos. Struct. 18(2), 425–442 (2015)

    Article  Google Scholar 

  32. Ahouel et al., Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept. Steel Compos. Struct. 20(5), 963–981 (2016)

    Article  Google Scholar 

  33. A. Zemri, M.S.A. Houari, A.A. Bousahla, A. Tounsi, A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct. Eng. Mech. 54, 693–710 (2015)

    Article  Google Scholar 

  34. S. Benguediab, A. Tounsi, M. Zidour, A. Semmah, Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes. Compos. B 57, 21–24 (2014)

    Article  Google Scholar 

  35. N. Yamaki, Influence of large amplitudes on flexural vibrations of elastic plates. ZAMM 41, 601–610 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  36. L.E. Shen, H.S. Shen, C.L. Zhang, Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments. Comput. Mat. Sci. 48, 680–685 (2010)

    Article  Google Scholar 

  37. P. Malekzadeh, Nonlinear free vibration of tapered Mindlin plates with edges elastically restrained against rotation using DQM. Thin-wall Struct. 46, 11–26 (2008)

    Article  Google Scholar 

  38. E. Jomehzadeh, A.R. Saidi, The small scale effect on nonlinear vibration of single layer graphene sheets. World Acad. Sci. Eng. Technol. 5, 06–29 (2011)

    Google Scholar 

  39. A.R. Setoodeh, P. Malekzadeh, A.R. Vosoughi, Nonlinear free vibration of orthotropic graphene sheets using nonlocal Mindlin plate theory. J. Mech. Eng. Sci. 7, 1896–1906 (2011)

    Google Scholar 

  40. A. Ghorbanpour Arani, R. Kolahchi, A.M. Barzoki, M.R. Mozdianfard, S.M. Noudeh Farahani (2012) Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic grapheme sheets using differential quadrature method. J. Mech. Eng. Sci. 1–18

  41. S. Razavi, A. Shooshtari, Nonlinear free vibration of magneto-electro-elastic rectangular plates. Compos. Struct. 119, 377–384 (2015)

    Article  Google Scholar 

  42. A. Ghorbanpour Arani, M.J. Maboudi, R. Kolahchi, Nonlinear vibration analysis of visoelastically coupled DLAGS-systems. Eur. J. Mech. A/Solids 45, 185–197 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  43. F. Ebrahimi, S.H.S. Hosseini, Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J. Therm. Stress. 39(5), 606–625 (2016)

    Article  Google Scholar 

  44. F. Ebrahimi, S.H.S. Hosseini, Double nanoplate-based NEMS under hydrostatic and electrostatic actuations. Eur. Phys. J. Plus 131(5), 1–19 (2016)

    Article  Google Scholar 

  45. Y. Wang, F.M. Li, Y.Z. Wang, Nonlinear vibration of double layered viscoelastic nanoplates based on nonlocal theory. Phys. E 67, 65–76 (2015)

    Article  Google Scholar 

  46. A.C. Eringen, Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  47. A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 54, 4703–4710 (1983)

    Article  ADS  Google Scholar 

  48. J.N. Reddy, An Introduction to Continuum Mechanics (Cambridge University Press, NewYork, 2008)

    Google Scholar 

  49. J.N. Reddy, Theory and Analysis of Elastic Plates and Shells, 2nd edn. (Taylor & Francis, Philadelphia, 2007)

    Google Scholar 

  50. L.L. Ke, Y.S. Wang, Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory. Smart Mater. Struct. 21, 025018 (2012)

    Article  ADS  Google Scholar 

  51. R. Lakes, Viscoelastic Materials (Cambridge University Press, New York, 2009)

    Book  MATH  Google Scholar 

  52. W.N. Findley, F.A. Davis, Creep and relaxation of nonlinear viscoelastic materials (Courier Corporation, 2013)

  53. J.N. Reddy, Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int. J. Eng. Sci. 48, 1507–1518 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. I.S. Raju, G.V. Rao, K. Raju, Effect of longitudinal or inplane deformation and inertia on the large amplitude flexural vibrations of slender beams and thin plates. J. Sound Vib. 46, 415–425 (1976)

    Article  ADS  MATH  Google Scholar 

  55. C.Y. Chia, Nonlinear analysis of plates (McGraw-Hill, New York, 1980)

    Google Scholar 

  56. S. Kitipornchai, X.Q. He, K.M. Liew, Continuum model for the vibration of multilayered grapheme sheets. Phys. Rev. B 72, 075443 (2005)

    Article  ADS  Google Scholar 

  57. Z. Zong, Y. Zhang, Advanced Differential Quadrature Methods (Taylor & Francis Group, New York, 2009)

    Book  MATH  Google Scholar 

  58. W. Chen, C. Shu, W. He, The applications of special matrix products to differential quadrature solution of geometrically nonlinear bending of orthotropic rectangular plates. Comput. Struct. 74, 65–76 (2000)

    Article  MathSciNet  Google Scholar 

  59. P. Lancaster, M. Timenetsky, The Theory of Matrices with Applications, 2nd edn. (Academic Press, Orlando, 1985)

    Google Scholar 

  60. A.G. Arani, R. Kolahchi, A.A.M. Barzoki, M.R. Mozdianfard, S.M.N. Farahani, Elastic foundation effect on nonlinear thermo-vibration of embedded double-layered orthotropic grapheme sheets using differential quadrature method. Proc. I Mech. E Part C: J. Mech. Eng. Sci. 227, 862–879 (2013)

    Article  Google Scholar 

  61. H.N. Chu, G. Herrman, Influence of large amplitude free flexural vibrations of rectangular elastic plates. J. Appl. Mech. 23, 532–540 (1956)

    MathSciNet  Google Scholar 

  62. T. Wah, Large amplitude flexural vibrations of rectangular plates. Intern. J. Mech. Sci. 5, 425–438 (1963)

    Article  Google Scholar 

  63. C. Mei, K. Decha-umphai, A finite element method for nonlinear forced vibration of rectangular plates. AIAA J. 23, 1104–1110 (1985)

    Article  ADS  MATH  Google Scholar 

  64. C.Y. Chia, M.K. Prabhakara, A general mode approach to nonlinear flexural vibrations of laminated rectangular plates. J. Appl. Mech. 45, 623–628 (1978)

    Article  ADS  Google Scholar 

  65. T. Manoj, M. Ayyappan, K.S. Krishnan, B. Nageswara Rao, Nonlinear vibration analysis of thin laminated rectangular plates on elastic foundations. ZAMM Z. Angew. Math. Mech. 3, 183–192 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  66. Q. Wang, Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer. Int. J. Solids Struct. 39, 3023–3037 (2002)

    Article  MATH  Google Scholar 

  67. L. Chen, L.L. Ke, Y.S. Wang, Jie Yang, S. Kitipornchai, Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory. Compos. Struct. 106, 167–174 (2013)

    Article  Google Scholar 

  68. H. Niknam, M.M. Aghdam, A semi analytical approach for large amplitude free vibration and buckling of nonlocal FG beams resting on elastic foundation. Compos. Struct. 119, 452–462 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farzad Ebrahimy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ebrahimy, F., Hosseini, S.H.S. Nonlinear electroelastic vibration analysis of NEMS consisting of double-viscoelastic nanoplates. Appl. Phys. A 122, 922 (2016). https://doi.org/10.1007/s00339-016-0452-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0452-6

Keywords

Navigation