Skip to main content
Log in

The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a unified elasto-viscoplastic constitutive model

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In authors’ previous work (Chen et al. in Appl Phys A. doi:10.1007/s00339-016-0371-6, 2016), the nonlinear unloading behavior of a typical Ni-based superalloy was investigated by hot compressive experiments with intermediate unloading–reloading cycles. The characters of unloading curves were discussed in detail, and a new elasto-viscoplastic constitutive model was proposed to describe the nonlinear unloading behavior of the studied Ni-based superalloy. Still, the functional relationships between the deformation temperature, strain rate, pre-strain and the parameters of the proposed constitutive model need to be established. In this study, the effects of deformation temperature, strain rate and pre-strain on the parameters of the new constitutive model proposed in authors’ previous work (Chen et al. 2016) are analyzed, and a unified elasto-viscoplastic constitutive model is proposed to predict the unloading behavior at arbitrary deformation temperature, strain rate and pre-strain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. M.S. Chen, Y.C. Lin, K.K. Li, J. Chen, The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a new elasto-viscoplastic constitutive model. Appl. Phys. A (2016). doi:10.1007/s00339-016-0371-6

    Google Scholar 

  2. F. Dunne, N. Petrinic, Introduction to Computational Plasticity (Oxford University Press, Oxford, 2005)

    MATH  Google Scholar 

  3. Y.C. Lin, X.M. Chen, A critical review of experimental results and constitutive descriptions for metals and alloys in hot working. Mater. Des. 32, 1733–1759 (2011)

    Article  Google Scholar 

  4. N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater. Des. 55, 999–1005 (2014)

    Article  Google Scholar 

  5. R. Bobbili, V. Madhu, Constitutive modeling of hot deformation behavior of high-strength armor steel. J. Mater. Eng. Perform. 25, 1829–1838 (2016)

    Article  Google Scholar 

  6. S.V. Sajadifar, G.G. Yapici, High temperature flow response modeling of ultra-fine grained titanium. Metals 5, 1315–1327 (2015)

    Article  Google Scholar 

  7. N. Kotkunde, H.N. Krishnamurthy, P. Puranik, A.K. Gupta, S.K. Singh, Microstructure study and constitutive modeling of Ti–6Al–4V alloy at elevated temperatures. Mater. Des. 54, 96–103 (2014)

    Article  Google Scholar 

  8. Y.C. Lin, C.Y. Zhao, M.S. Chen, D.D. Chen, A novel constitutive model for hot deformation behaviors of Ti–6Al–4V alloy based on probabilistic method. Appl. Phys. A 122, 716–724 (2016)

    Article  ADS  Google Scholar 

  9. A. Etaati, K. Dehghani, G.R. Ebrahimi, H. Wang, Predicting the flow stress behavior of Ni–42.5Ti–3Cu during hot deformation using constitutive equations. Met. Mater. Int. 19, 5–9 (2013)

    Article  Google Scholar 

  10. A.A. Khamei, K. Dehghani, Modeling the hot-deformation behavior of Ni60wt%–Ti40wt% intermetallic alloy. J. Alloys Compd. 490, 377–381 (2010)

    Article  Google Scholar 

  11. S.V. Sajadifar, G.G. Yapici, M. Ketabchi, B. Bemanizadeh, High temperature deformation behavior of 4340 steel: activation energy calculation and modeling of flow response. J. Iron Steel Res. Int. 20, 133–139 (2013)

    Article  Google Scholar 

  12. Y.Q. Ning, M.W. Fu, X. Chen, Hot deformation behavior of GH4169 superalloy associated with stick δ phase dissolution during isothermal compression process. Mater. Sci. Eng. A 540, 164–173 (2012)

    Article  Google Scholar 

  13. Y.C. Lin, J. Deng, Y.Q. Jiang, D.X. Wen, G. Liu, Hot tensile deformation behaviors and fracture characteristics of a typical Ni-based superalloy. Mater. Des. 55, 949–957 (2014)

    Article  Google Scholar 

  14. Y.C. Lin, D.X. Wen, J. Deng, G. Liu, J. Chen, Constitutive models for high-temperature flow behaviors of a Ni-based superalloy. Mater. Des. 59, 115–123 (2014)

    Article  Google Scholar 

  15. S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa Rao, U. Borah, Constitutive modeling for predicting peak stress characteristics during hot deformation of hot isostatically processed nickel-base superalloy. J. Mater. Sci. 50, 6444–6456 (2015)

    Article  ADS  Google Scholar 

  16. Y.C. Lin, K.K. Li, H.B. Li, J. Chen, X.M. Chen, D.X. Wen, New constitutive model for high-temperature deformation behavior of Inconel 718 superalloy. Mater. Des. 74, 108–118 (2015)

    Article  Google Scholar 

  17. Y.C. Lin, D.X. Wen, Y.C. Huang, X.M. Chen, X.W. Chen, A unified physically-based constitutive model for describing strain hardening effect and dynamic recovery behavior of a Ni-based superalloy. J. Mater. Res. 30, 3784–3794 (2015)

    Article  ADS  Google Scholar 

  18. R.M. Cleveland, A.K. Ghosh, Inelastic effects on springback in metals. Int. J. Plast. 18, 769–785 (2002)

    Article  MATH  Google Scholar 

  19. R. Hill, The Mathematical Theory of Plasticity (Clarendon Press, Oxford, 1950)

    MATH  Google Scholar 

  20. S.R. Bodner, Y. Partom, Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech. 42, 385–389 (1975)

    Article  ADS  Google Scholar 

  21. Y.Q. Ning, B.C. Xie, H.Q. Liang, H.Z. Guo, Dynamic softening behaviors of TC18 titanium alloy during hot deformation. Mater. Des. 71, 68–77 (2015)

    Article  Google Scholar 

  22. Y.C. Lin, X.M. Chen, M.S. Chen, Y. Zhou, D.X. Wen, D.G. He, A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Appl. Phys. A 122, 1–14 (2016)

    ADS  Google Scholar 

  23. S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, U. Borah, Strain rate dependent microstructural evolution during hot deformation of a hot isostatically processed nickel base superalloy. J. Alloys Compd. 681, 28–42 (2016)

    Article  Google Scholar 

  24. M.S. Chen, Y.C. Lin, K.K. Li, Y. Zhou, A new method to establish dynamic recrystallization kinetics model of a typical solution-treated Ni-based superalloy. Comp. Mater. Sci. 122, 150–158 (2016)

    Article  Google Scholar 

  25. N. Kotkunde, A.D. Deole, A.K. Gupta, S.K. Singh, Comparative study of constitutive modeling for Ti–6Al–4V alloy at low strain rates and elevated temperatures. Mater. Des. 55, 999–1005 (2014)

    Article  Google Scholar 

  26. Y.Y. Dong, C.S. Zhang, X. Lu, C.X. Wang, G.Q. Zhao, Constitutive equations and flow behavior of an as-extruded AZ31 magnesium alloy under large strain condition. J. Mater. Eng. Perform. 25, 2267–2281 (2016)

    Article  Google Scholar 

  27. X.Q. Li, G.Q. Guo, J.J. Xiao, N. Song, D.S. Li, Constitutive modeling and the effects of strain rate and temperature on the formability of Ti–6Al–4V alloy sheet. Materi. Des. 55, 325–334 (2014)

    Article  Google Scholar 

  28. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, K.V. Kasiviswanathan, Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel. Mater. Sci. Eng. A 500, 114–121 (2009)

    Article  Google Scholar 

  29. D. Samantaray, S. Mandal, A.K. Bhaduri, Constitutive analysis to predict high-temperature flow stress in modified 9Cr–1Mo (P91) steel. Mater. Des. 31, 981–984 (2010)

    Article  Google Scholar 

  30. C.M. Sellars, On the mechanism of hot deformation. Acta Metall. 14, 1136–1138 (1966)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (No. 51305466, 51375502), National Key Basic Research Program (Grant No. 2013CB035801), State Key Laboratory of High Performance Complex Manufacturing (No. zzyjkt2014-01), the Project of Innovation-driven Plan in Central South University (No. 2016CX008), the Natural Science Foundation for Distinguished Young Scholars of Hunan Province (Grant No. 2016JJ1017), and Program of Chang Jiang Scholars of Ministry of Education (No. Q2015140), and Key Laboratory of Efficient & Clean Energy Utilization, College of Hunan Province (No. 2015NGQ001), China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. C. Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, MS., Lin, Y.C., Li, KK. et al. The nonlinear unloading behavior of a typical Ni-based superalloy during hot deformation: a unified elasto-viscoplastic constitutive model. Appl. Phys. A 122, 854 (2016). https://doi.org/10.1007/s00339-016-0385-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0385-0

Keywords

Navigation