Skip to main content
Log in

Evaluation of optoelectronic response and Raman active modes in Tb3+ and Eu3+-doped gadolinium oxide (Gd2O3) nanoparticle systems

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Rare earth oxide (Tb3+:Gd2O3 and Eu3+:Gd2O3) nanophosphors are exploited through spectroscopic and microscopic tools with special emphasis on DF mediated radiative emission and Raman active vibrational modes. Powder X-ray diffraction measurements have revealed cubic crystal structure of the nanosystems and with an average crystallite size varying between ~3.2 and 4.8 nm. Photoluminescence (PL) spectra of Tb3+ doped systems signify intense blue-green (~490 nm) and green (~544 nm) emissions mediated by 5 D 4 → 7 F 6 and 5 D 4 → 7 F 5 transitional events; respectively. In the PL responses of Eu3+ doped nanoparticle systems, we also identify magnetically-driven 5 D 0 → 7 F 1 (~591 nm) and electrically driven 5 D 0 → 7 F 2 (~619 nm) radiative features which seem to improve with increasing doping level. However, the magnitude of Judd–Ofelt (J–O) intensity parameters (Ω 2, 4), is significantly lowered for the high doping cases. Raman spectra of the undoped and RE doped systems exhibited several Ag and Fg modes in the range of Raman shift ~100–600 cm−1. In the Raman spectra, the peaks located at ~355 cm−1 are assigned to the mixed mode of F g + A g, the line width of which was found to increase with RE doping. Moreover, owing to the enhanced defect concentration in the doped systems than its undoped counterpart, we anticipate a faster phonon relaxation and consequently, a suppression of phonon lifetime in the former case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Chen, C. He, C. Gao, Y. Ma, J. Zhang, X. Wang, S. Gao, D. Li, S. Kan, G. Zou, J. Phys. Condens. Matter 19, 425229 (2007)

    ADS  Google Scholar 

  2. M. Zannen, A. Lahmar, B. Asbani, H. Khemakhem, M. El Marssi, Z. Kutnjak, M. Es Souni, Appl. Phys. Lett. 107, 032905 (2015)

    Article  ADS  Google Scholar 

  3. R.K. Tamrakar, D.P. Bisen, K. Upadhyay, I.P. Sahu, J. Phys. Chem. C 119(36), 21072 (2015)

    Article  Google Scholar 

  4. I. Kamińska, K. Fronc, B. Sikora, M. Mouawad, A. Siemiarczuk, M. Szewczyk, K. Sobczak, T. Wojciechowski, W. Zaleszczyk, R. Minikayev, W. Paszkowicz, P. Stępień, P. Dziawa, K. Ciszak, D. Piątkowski, S. Maćkowski, M. Kaliszewski, M. Włodarski, J. Młyńczak, K. Kopczyński, M. Łapiński, D. Elbaum, RSC Adv. 5, 78361 (2015)

    Article  Google Scholar 

  5. H. Lu, G. Yi, S. Zhao, D. Chen, L.H. Guo, J. Cheng, Mater Chem. 14, 1336 (2004)

    Article  Google Scholar 

  6. T. Hirai, T. Orikoshi, J. Colloid Interface Sci. 269, 103 (2004)

    Article  Google Scholar 

  7. R.G. Haire, L. Eyring, in: K.A. Gschneidner Jr, L. Eyring (Eds.), Handbook on the Physics and Chemistry of Rare Earths, North-Holland Publishing Company, 1994

  8. V.M. Goldschmidt, E. Ulrich, T.Barth, N.V. Akad, I. Skrifter, Mat. Naturv. K1, 5 (1925)

  9. T.D. Chikalla, C.E. McNeilly, F.P. Roberts, J. Am. Ceram. Soc. 55, 428 (1972)

    Article  Google Scholar 

  10. M. Nichkova, D. Dosev, R. Perron, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Bioanal. Chem. 384, 631 (2006)

    Article  Google Scholar 

  11. S. Lechevallier, P. Lecante, R. Mauricot, H. Dexpert, J. Dexpert-Ghys, H.K. Kong, H.-K. Kong, G.-L. Law, K.-L. Wong, Chem. Mater. 22, 6153 (2010)

    Article  Google Scholar 

  12. W. Xu, J.Y. Park, K. Kattel, B.A. Bony, W.C. Heo, S. Jin, J.W. Park, Y. Chang, J.Y. Do, K.S. Chae, T.J. Kim, J.A. Park, Y.W. Kwak, G.H. Lee, New J. Chem. 36, 2361 (2012)

    Article  Google Scholar 

  13. N.M. Maalej, A. Qurashi, A.A. Assad, R. Maalej, M.N. Shaikh, M. Ilyas, M.A. Gondal, Nanoscale Res. Lett. 10, 215 (2015)

    Article  ADS  Google Scholar 

  14. M. Johannsen, U. Gneveckow, L. Eckelt, A. Feussner, N. Waldöfner, R. Scholz, S. Deger, P. Wust, S.A. Loening, A. Jordan, Int. J. Hyperth. 21, 637 (2005)

    Article  Google Scholar 

  15. J. Feng, G. Shan, A. Maquieira, M.E. Koivunen, B. Guo, B.D. Hammock, I.M. Kennedy, Anal. Chem. 75, 5282 (2003)

    Article  Google Scholar 

  16. M. Nichkova, D. Dosev, S.J. Gee, B.D. Hammock, I.M. Kennedy, Anal. Chem. 77, 6864 (2005)

    Article  Google Scholar 

  17. D. Wawrzynczyk, M. Nyk, A. Bednarkiewicz, W. Strek, M. Samoc, J. Nanopart. Res. 16(11), 2690 (2014)

    Article  Google Scholar 

  18. F. Chen, M. Chen, C. Yang, J. Liu, N. Luo, G. Yang, D. Chen, L. Li, Phys. Chem. Chem. Phys. 17, 1189 (2015)

    Article  Google Scholar 

  19. P.H. Klug, L.E. Alexender, X-Ray Diffraction (Addision-Wilson, Reading, 1974)

    Google Scholar 

  20. C. Suranarayana, M.G. Norton, X-Ray Diffraction: A Practical Approach (Springer, New York, 1998)

    Book  Google Scholar 

  21. G.H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Interscience Publishers, New York, 1968)

    Google Scholar 

  22. S. Seo, H. Yang, P.H. Holloway, J. Colloid Interface Sci. 331(1), 236 (2009)

    Article  Google Scholar 

  23. M. Ou, B. Mutelet, M. Martini, R. Bazzi, S. Roux, G. Ledoux, O. Tillement, P. Perriat, J. Colloid Interface Sci. 333, 684 (2009)

    Article  Google Scholar 

  24. S.P. Singh, B. Karmakar, RSC Adv. 1, 751 (2011)

    Article  Google Scholar 

  25. E.M. Goldys, K. Drozdowicz-Tomsia, S. Jinjun, D. Dosev, I.M. Kennedy, S. Yatsunenko, M. Godlewski, J. Am. Chem. Soc. 128(45), 14498 (2006)

    Article  Google Scholar 

  26. J. Hölsa, T. Leskela, M. Leskela, Inorg. Chem. 24(10), 1539 (1985)

    Article  Google Scholar 

  27. G.S. Ofelt, J. Chem. Phys. 37(3), 511 (1962)

    Article  ADS  Google Scholar 

  28. A.K. Parchur, R.S. Ningthoujam, RSC Adv. 2, 10859 (2012)

    Article  Google Scholar 

  29. C. Liu, J. Liu, K. Dou, J. Phys. Chem. B 110(41), 20277 (2006)

    Article  Google Scholar 

  30. R.V. Deun, K. Binnemans, C. Görller-Walrand, J.L. Adam, J. Phys. Condens. Mater. 10, 7231 (1998)

    Article  ADS  Google Scholar 

  31. L. Liu, X. Chen, Nanotechnology 18, 255704 (2007)

    Article  ADS  Google Scholar 

  32. J.H.S.K. Monteiro, I.O. Mazali, F.A. Sigoli, J. Fluoresc. 21, 2237 (2011)

    Article  Google Scholar 

  33. H. Guo, X. Yang, T. Xiao, W. Zhanga, L. Lou, J. Mugnier, Appl. Surf. Sci. 230, 215 (2004)

    Article  ADS  Google Scholar 

  34. G. Rajan, K.G. Gopchandran, Appl. Surf. Sci. 255, 9112 (2009)

    Article  ADS  Google Scholar 

  35. N. Dilawar, S. Mehrotra, D. Varandani, B.V. Kumaraswamy, S.K. Haldar, A.K. Bandyopadhyay, Mater. Charact. 59, 462 (2008)

    Article  Google Scholar 

  36. N. Dilawar, D. Varandani, S. Mehrotra, H.K. Poswal, S.M. Sharma, A.K. Bandyopadhyay, Nanotechnology 19, 115703 (2008)

    Article  ADS  Google Scholar 

  37. W.B. White, V.G. Keramidas, Spectrochim. Acta A: Mol. Spect. 28, 501 (1972)

    Article  ADS  Google Scholar 

  38. M. Pal, U. Pal, J.M.G.Y. Jiménez, F. Pérez-Rodríguez, Nanoscale Res. Lett. 7(1), 1 (2012)

    Article  ADS  Google Scholar 

  39. L.K. Pan, C.Q. Sun, C.M. Li, J. Phys. Chem. B 108, 3404 (2004)

    Article  Google Scholar 

  40. D. Georgescu, L. Baia, O. Ersen, M. Baia, S. Simon, J. Raman Spect. 43, 876 (2012)

    Article  ADS  Google Scholar 

  41. S. Sahoo, A.K. Arora, V. Sridharan, J. Phys. Chem. C 113, 16927 (2009)

    Article  Google Scholar 

  42. K.R. Zhu, M.S. Zhang, Q. Chen, Z. Yin, Phys. Lett. A 340, 220 (2005)

    Article  ADS  Google Scholar 

  43. G. Faraci, S. Gibilisco, P. Russo, A.R. Pennisi, S. La Rosa, Phys. Rev. B 73, 033307 (2006)

    Article  ADS  Google Scholar 

  44. A.K. Arora, M. Rajalakshmi, T.R. Ravindran, V. Sivasubramanian, J. Raman Spectr. 38(6), 604 (2007)

    Article  ADS  Google Scholar 

  45. V.M. Dzhagan, I. Lokteva, C. Himcinschi, J. Kolny-Olesiak, M.Y. Valakh, S. Schulze, D.R.T. Zahn, J. Appl. Phys. 109, 084334 (2011)

    Article  ADS  Google Scholar 

  46. S.D. Pandey, K. Samanta, J. Singh, N. Dilawar, S.M. Sharma, A.K. Bandyopadhyay, AIP Adv. 3, 122123 (2013)

    Article  ADS  Google Scholar 

  47. D. Wang, J. Zhao, B. Chen, C. Zhu, J. Phys. Condens. Mat. 20, 085212 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

One of the authors (N.P.) acknowledge DST, New Delhi for providing fellowship through INSPIRE scheme. We also acknowledge SAIF-NEHU, Shillong and SAIC-TU, Tezpur for extending TEM and Raman studies; respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Mohanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paul, N., Mohanta, D. Evaluation of optoelectronic response and Raman active modes in Tb3+ and Eu3+-doped gadolinium oxide (Gd2O3) nanoparticle systems. Appl. Phys. A 122, 845 (2016). https://doi.org/10.1007/s00339-016-0347-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0347-6

Keywords

Navigation