Skip to main content

Advertisement

Log in

Photoluminescence dynamics and structural characteristics of green-glimmering vanadate-based nanophosphors for progressive optoelectronic applications

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Fair green emission is observed in the Er3+ activated Ca9Bi(VO4)7 nanocrystalline material series fabricated via solution combustion methodology. A crystal prototype of the trigonal phase with R3c (161) space group having irregularly shaped grains with sizes between 43 and 61 nm is formed. Morphological aspects are examined via scanning and transmission electron microscopy (SEM and TEM). On near-UV excitation, the photoluminescence spectrum presents a good green emission at 18182 cm−1 wavenumbers consistent with the electronic transition 4S3/24I15/2. The energy transfer phenomena are also discussed. The highest luminous intensity is observed for 8.0 mol% of Er3+ composition (synthesized via solution combustion technique) with 382 nm excitation. d–q Exchanges authorized the presence of the concentration quenching phenomenon. Time decay analysis and non-radiative energy transfer mechanisms were also explored. Diffuse reflectance spectroscopy was taken into use to explore the energy bandgap, which lies in the semiconductor domain. The CIE coordinates lay in the greenish zone of the chromaticity plan, thus confirming their latent contention in pc-WLEDs and other innovative optoelectronic claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Pust P, Weiler V, Hecht C, Tücks A, Wochnik A S, Henß A K et al 2012 Nat. Mater. 13 891

    Article  Google Scholar 

  2. Liu M, Lü W, Huo J, Shao B, Feng Y, Zhao S et al 2016 RSC Adv. 6 92371

    Article  CAS  Google Scholar 

  3. Chen H Y, Yang R Y and Chang S J 2010 Mater. Lett. 64 2548

    Article  CAS  Google Scholar 

  4. Baur F, Glocker F and Jüstel T 2015 Mater. Chem. C 3 2054

    Article  CAS  Google Scholar 

  5. Zhang K, Liu H, Wu Y and Hu W 2007 J. Mater. Sci. 42 9200

    Article  CAS  Google Scholar 

  6. Phogat P, Taxak V B and Malik R K 2022 Solid State Sci. 133 107013

    Article  CAS  Google Scholar 

  7. Li K, Liu J, Mara D and Van Deun R 2018 J. Alloys Compd. 737 767

    Article  CAS  Google Scholar 

  8. Nguyen V, Chi Tran T K and Nguyen D V 2011 Adv. Nat. Sci: Nanosci. Nanotechnol. 2 045011

    Google Scholar 

  9. Kim S W, Hasegawa T, Muto M, Toda A, Kaneko T, Sugimoto K et al 2017 New J. Chem. 41 4788

    Article  CAS  Google Scholar 

  10. Niu P, Liu X, Wang Y and Zhao W 2018 J. Mater. Sci: Mater. Electron. 29 124

    CAS  Google Scholar 

  11. Dalal M, Chahar S, Dalal J, Devi R, Kumar D, Devi S et al 2018 Ceram. Int. 44 10531

    Article  CAS  Google Scholar 

  12. Phogat P, Khatkar S P, Malik R K, Dalal J, Hooda A and Taxak V B 2021 J. Lumin. 234 117984

    Article  CAS  Google Scholar 

  13. Phogat P, Khatkar S P, Malik R K, Sushma Dalal J, Hooda P et al 2021 Mater. Chem. Phys. 270 124828

    CAS  Google Scholar 

  14. Phogat P, Khatkar S P, Malik R K, Dalal J, Punia M and Taxak V B 2021 J. Mater. Sci.: Mater. Electron. 32 8615

    CAS  Google Scholar 

  15. Jain A and Hirata G A 2016 Ceram. Int. 42 6428

    Article  CAS  Google Scholar 

  16. Bonturim E, Merízio L G, dos Reis R, Brit H F, Rodrigues L C V and Felinto M C F C 2018 J. Alloys Compd. 732 705

    Article  CAS  Google Scholar 

  17. Patil K C, Hegde M S, Rattan T and Aruna S T 2008 World Scientific Publishing Co. Pte. Ltd., Singapore

  18. Singh S, Khatkar S P, Boora P and Taxak V B 2014 J. Mater. Sci. 49 4773

    Article  CAS  Google Scholar 

  19. Ekambaram S and Patil K C 1997 J. Alloys Compd. 248 7

    Article  CAS  Google Scholar 

  20. Ekambaram S and Patil K C 1995 J. Mater. Chem. 5 905

    Article  CAS  Google Scholar 

  21. Stutzman P E and Struble L 2015 National Institute of Standards and Technology 1884

  22. Toby B H 2001 J. Appl. Crystallogr. 34 210

    Article  CAS  Google Scholar 

  23. Lutterotti L, Bortolotti M, Ischia G, Lonardelli I and Wenk H R 2007 Oldenbourg Wissenschaftsverlag 125

  24. Lutterotti L, Chateigner D, Ferrari S and Ricote J 2004 Thin Solid Films 450 34

    Article  CAS  Google Scholar 

  25. Sheoran M, Sehrawat P, Kumar M, Kumari N, Taxak V B and Khatkar S P 2021 Optik 241 167041

    Article  CAS  Google Scholar 

  26. Dhanalakshmi M, Nagabhushana H, Sharma S C, Basavaraj R B, Darshan G P and andKavyashree D, 2018 Mater. Res. Bull. 102 235

    Article  CAS  Google Scholar 

  27. Kubelka P 1948 J. Opt. Soc. Am. 38 448

    Article  CAS  Google Scholar 

  28. Monshi A, Foroughi M R and Monshi M R 2012 WJNSE 02 154

    Article  Google Scholar 

  29. Mendhe M S, Puppalwar S P and Dhoble S J 2018 Optik 166 15

    Article  CAS  Google Scholar 

  30. Dalal H, Kumar M, Sehrawat P, Sheoran M, Sehrawat N, Kumar S et al 2022 J. Mater. Sci.: Mater. Electron. 33 13743

    CAS  Google Scholar 

  31. Sheoran M, Sehrawat P, Kumar M and Malik R K 2022 Mater. Res. Bull. 145 111522

    Article  CAS  Google Scholar 

  32. Pandey P K, Chauhan V, Dixit P and Pandey P C 2022 Mater. Sci. Semicond. Process. 150 106915

    Article  CAS  Google Scholar 

  33. Huang X and Guo H 2018 Dyes Pigm. 154 82

    Article  CAS  Google Scholar 

  34. Huang X and Guo H 2018 Ceram. Int. 44 10340

    Article  CAS  Google Scholar 

  35. Sehrawat P, Malik R K, Sheoran M and Punia R 2021 Chem. Phy. Lett. 777 138752

    Article  CAS  Google Scholar 

  36. Deng Y, Yi S, Wang Y and Xian J 2014 Opt. Mater. 36 1378

    Article  CAS  Google Scholar 

  37. Devi S, Kaushik S, Kumar M, Dalal H, Gaur S and Kumar S 2022 Appl. Phys. A 128 23

    Article  CAS  Google Scholar 

  38. Christy A A, Kvalheim O M and Velapoldi R A 1995 Vibr. Spectrosc. 9 19

    Article  CAS  Google Scholar 

  39. Auzel F 2002 J. Lumin. 100 125

    Article  CAS  Google Scholar 

  40. Blasse G 1968 Phys. Lett. A 28 444

    Article  CAS  Google Scholar 

  41. Dalal H, Sehrawat P, Sheoran M, Kumar M and Malik R K 2021 J. Mater. Sci.: Mater. Electron. 33 767

    Google Scholar 

  42. Kaushik S, Devi S, Kumar M, Dalal H, Srivastava A and Srivastava M 2022 Mater. Res. Bull. 156 111966

    Article  CAS  Google Scholar 

  43. Dalal H, Kumar M, Devi S, Sehrawat P, Sheoran M, Devi P et al 2022 J. Fluoresc. 21

Download references

Acknowledgement

Hina Dalal acknowledges the financial support from the University Grants Commission in the form of SRF (Award No. 49/(CSIR-UGC NET JUNE 2019)) to carry out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R K Malik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalal, H., Kumar, M., Devi, S. et al. Photoluminescence dynamics and structural characteristics of green-glimmering vanadate-based nanophosphors for progressive optoelectronic applications. Bull Mater Sci 46, 173 (2023). https://doi.org/10.1007/s12034-023-03005-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-023-03005-2

Keywords

Navigation