Skip to main content
Log in

Effect of Sb2O3 on the electrical properties of Ba0.9Ca0.1Zr0.1Ti0.9O3 ceramics fabricated using nanocrystals seed

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work was to investigate the effects of antimony oxide (Sb2O3) on the electrical properties of Ba0.9Ca0.1Zr0.1Ti0.9O3 (BCZT) ceramics and was prepared by adding 1 mol% of BCZT nanocrystals. The seed is nanocrystals of BCZT which was synthesized by the molten salt method. The ceramics powders were prepared by the mixed oxide method using BaCO3, CaCO3, ZrO2, TiO2 as starting materials, and the BCZT seed was added as nanocrystal for induce phase transition. They were doped with x mol% Sb2O3 (x = 0.0–0.5). Results indicated that all samples show pure perovskite phase. The Sb2O3 enhanced the electrical properties of the ceramic systems. Excellent values of a dielectric constant (ε r) at room temperature (T r) were 4086 with sample of x = 0.5, and at Curie temperature (T c) was 15,485 for samples with x = 0.1. The highest remnant polarization (P r), piezoelectric charge coefficient (d 33), piezoelectric voltage coefficient (g 33), electromechanical coefficient for planar mode (k p) and thickness mode (k t) values were 6.3 μC/cm2, 346 pC/N, 15.6 × 10−3 Vm/N, 42 and 41 %, respectively, which were obtained for the sample of x = 0.2 mol% Sb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Egerton, D.M. Dillon, J. Am. Ceram. Soc. 42, 438 (1959)

    Article  Google Scholar 

  2. G.O. Jones, P.A. Thomas, Acta Crystallogr. B56, 426 (2000)

    Article  Google Scholar 

  3. D. Hennings, A. Schnell, G. Simon, J. Am. Ceram. Soc. 65, 539 (1982)

    Article  Google Scholar 

  4. X. Wang, H. Yamada, C.N. Xu, Appl. Phys. Lett. 86, 022905 (2005)

    Article  ADS  Google Scholar 

  5. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Article  ADS  Google Scholar 

  6. J. Wu, D. Xiao, W. Wu, Q. Chen, J. Zhu, Z. Yang, J. Wang, Scr. Mater. 65, 771 (2011)

    Article  Google Scholar 

  7. Q. Lin, M. Jiang, D. Lin, Q. Zheng, X. Wu, X. Fan, J. Mater. Sci. Mater. Electron. 24, 734 (2013)

    Article  Google Scholar 

  8. T. Chen, T. Zhang, G. Wang, J. Zhou, J. Zhang, Y. Liu, J. Mater. Sci. 47, 4612 (2012)

    Article  ADS  Google Scholar 

  9. P. Parjansri, K. Pengpat, G. Rujijanagul, T. Tunkasiri, U. Intatha, S. Eitssayeam, Ferroelectrics 458, 91 (2014)

    Article  Google Scholar 

  10. Z. Li, A. Wu, P.M. Vilarinho, Chem. Mater. 16, 717 (2004)

    Article  Google Scholar 

  11. S.K. Ye, J.Y.H. Fuh, L. Lu, Appl. Phys. Lett. 100, 252906 (2012)

    Article  ADS  Google Scholar 

  12. Y.-J. Son, Y.-J. Kim, B.-H. Lee, S.-Y. Hwang, N.-K. Park, H.-Y. Chang, S.-K. Hong, S.J. Hong, J. Korean Phys. Soc. 51, 701 (2007)

    Article  ADS  Google Scholar 

  13. L.M. Sanchez, D.M. Potrepka, G.R. Fox, I. Takeuchi, K. Wang, L.A. Bendersky, R.G. Polcawich, J. Mater. Res. 28, 1920 (2013)

    Article  Google Scholar 

  14. J.A. Horn, S.C. Zhang, U. Selvaraj, G.L. Messing, S. T-McKinstry, J. Am. Ceram. Soc. 82, 921 (1999)

    Article  Google Scholar 

  15. C. Duran, S. T-McKinstry, G.L. Messing, J. Am. Ceram. Soc. 83, 2203 (2000)

    Article  Google Scholar 

  16. I.-H. Chan, C.-T. Sun, M.-P. Houng, S.-Y. Chu, Ceram. Int. 37, 2061 (2011)

    Article  Google Scholar 

  17. D. Lin, K.W. Kwok, K.H. Lam, H.L.W. Chan, J. Phys. D Appl. Phys. 40, 3500 (2007)

    Article  ADS  Google Scholar 

  18. R. Rani, S. Sharma, R. Rai, A.L. Kholkin, Mater. Res. Bull. 47, 381 (2012)

    Article  Google Scholar 

  19. M.M. Vijatović Petrović, J.D. Bobić, J. Banys, B.D. Stojanović, Mater. Res. Bull. 48, 3766 (2013)

    Article  Google Scholar 

  20. S. Dutta, R.N.P. Choudhary, P.K. Sinha, Mater. Sci. Eng. B 113, 215 (2004)

    Article  Google Scholar 

  21. R.B. Atkin, R.M. Fulrath, J. Am. Ceram. Soc. 54, 265 (1971)

    Article  Google Scholar 

  22. H. Tang, Y.J. Feng, Z. Xu, C.H. Zhang, J.Q. Gao, J. Mater. Res. 24(5), 1642 (2009)

    Article  ADS  Google Scholar 

  23. J. Ma, X. Liu, M. Jiang, H. Yang, G. Chen, X. Liu, L. Qin, C. Luo, J. Mater. Sci. Mater. Electron. 25, 992 (2014)

    Article  Google Scholar 

  24. H.T. Martirenat, J.C. Burfoot, J. Phys. C Solid State Phys. 7, 3182 (1974)

    Article  ADS  Google Scholar 

  25. A.J. Moulson, J.M. Herbert, Electroceramics Materials, Properties, Applications, 2nd edn. (Wiley, New York, 2003)

    Google Scholar 

  26. W.Y. Choi, J.-H. Ahn, W.-J. Lee, H.-G. Kim, Mater. Lett. 37, 119 (1998)

    Article  Google Scholar 

  27. W. Li, J. Qi, Y. Wang, L. Li, Z. Gui, Mater. Lett. 57, 1 (2002)

    Article  Google Scholar 

  28. D. Shan, Y. Qu, J. Song, J. Mater. Res. 22(3), 730 (2007)

    Article  ADS  Google Scholar 

  29. K. Uchino, S. Nomura, Ferroelectr. Lett. 44, 55 (1982)

    Article  Google Scholar 

  30. Q. Tan, D. Viehland, Ferroelectrics 193, 157 (1997)

    Article  Google Scholar 

  31. H. Yu, H.X. Liu, H. Hao, L.L. Guo, C.J. Jin, Z.Y. Yu, M.H. Cao, Appl. Phys. Lett. 91, 222911 (2007)

    Article  ADS  Google Scholar 

  32. K. Shantha, K.B.R. Varma, J. Mater. Res. 14(2), 476 (1999)

    Article  ADS  Google Scholar 

  33. J.H. Park, B.K. Kim, K.H. Song, S.J. Park, J. Mater. Sci. Mater. Electron. 6, 97 (1995)

    Google Scholar 

  34. K. Kumar, B. Kumar, Ceram. Int. 38, 1157 (2012)

    Article  Google Scholar 

  35. C.A. Randall, N. Kim, J.P. Kucera, W.W. Cao, T.R. Shrout, J. Am. Ceram. Soc. 81, 677 (1998)

    Article  Google Scholar 

  36. S. Zhang, R. Xia, T.R. Shrout, G. Zang, J. Wang, J. Appl. Phys. 100, 104108 (2006)

    Article  ADS  Google Scholar 

  37. M. Demartin, D. Damjanovic, Appl. Phys. Lett. 68, 3046 (1996)

    Article  ADS  Google Scholar 

  38. H.X. Fu, R.E. Cohen, Nat. Mater. 403, 281 (2000)

    Google Scholar 

  39. D. Damjanovic, J. Am. Ceram. Soc. 88, 2663 (2005)

    Article  Google Scholar 

  40. IEEE Standard on Piezoelectricity, IEEE Standard 176-1978 (Institute of Electrical and Electronic Engineers, New York, 1978)

  41. J. Hao, W. Bai, W. Li, J. Zhai, J. Am. Ceram. Soc. 95, 1998 (2012)

    Article  Google Scholar 

  42. W. Cai, C. Fu, J. Gao, X. Deng, J. Mater. Sci. Mater. Electron. 21, 317 (2010)

    Article  Google Scholar 

  43. S.J. Yoon, S.J. Yoo, J.H. Moon, H.J. Jung, H.J. Kim, J. Mater. Res. 11, 348 (1996)

    Article  ADS  Google Scholar 

  44. K. Uchino, Piezoelectric Ceramics Material, Application, Processing and Properties Handbook of Advanced Ceramics (Elsevier, Amsterdam, 2003)

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the Thailand Research Fund (TRF) grant no. TRG5780013 for financial support, including the support given through the Royal Golden Jubilee Ph.D. Program, Office of the Higher Education Commission, Thailand, Multi-Functional Electronic Material and Device Research Lab (UTSA) through NSF/INAMM, Science and Technology Research Institute, Chiang Mai University and the Faculty of Science and Graduate School, Chiang Mai University, Mae Fah Luang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Eitssayeam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parjansri, P., Intatha, U., Guo, R. et al. Effect of Sb2O3 on the electrical properties of Ba0.9Ca0.1Zr0.1Ti0.9O3 ceramics fabricated using nanocrystals seed. Appl. Phys. A 122, 840 (2016). https://doi.org/10.1007/s00339-016-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0320-4

Keywords

Navigation