Skip to main content
Log in

Effect of Co3+ on structure and electrical properties of Na0.5Bi2.5Nb2O9 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Na0.5Bi2.5Nb2-xCoxO9 (NBNC-x, x = 0.00, 0.02, 0.05, 0.07, 0.09) bismuth layered piezoelectric ceramics were synthesized by the traditional solid-state method. The microstructure, piezoelectric, dielectric and ferroelectric properties of Co3+ doped NBNC-x ceramics were systematically investigated. The XRD results showed all ceramics possess bismuth layered structure. The Curie temperature (Tc) gradually enhanced from 778 to 793 °C with the addition of Co3+ content. Moreover, the Co3+ doping significantly enhance piezoactivity (d33) and ferroelectricity (Pr), and reduce dielectric loss (tan δ). The Na0.5Bi2.5Nb1.93Co0.07O9 ceramic had optimum combinations of electrical properties (e.g., d33 ~ 20.1 pC/N, Pr ~ 4.22 μC cm−2, tan δ ~ 0.31%, Qm ~ 3405). These results indicate that the Co3+ doped Na0.5Bi2.5Nb2O9 ceramics has potential application in the high-temperature field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.H. Park, B.S. Kang, S.D. Bu et al., Lanthanum-substituted bismuth titanate for use in non-volatile memories. Nature 401, 682–684 (1999)

    Article  CAS  Google Scholar 

  2. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999)

    Article  CAS  Google Scholar 

  3. S. Zhang, F. Yu, Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94, 3153–3170 (2011)

    Article  CAS  Google Scholar 

  4. D. Damjanovic, Materials for high temperature piezoelectric transducers. Curr. Opin. Solid State Mater. Sci. 3, 469–473 (1998)

    Article  CAS  Google Scholar 

  5. E.C. Subbarao, A family of ferroelectric bismuth compounds. J. Phys. Chem. Solids 23, 665–676 (1962)

    Article  CAS  Google Scholar 

  6. R.E. Newnham, R.W. Wolfe, J.F. Dorrian, Structural basis of ferroelectricity in the bismuth titanate family. Mater. Res. Bull. 6, 1029–1039 (1971)

    Article  CAS  Google Scholar 

  7. T. Takenaka, K. Sakata, Grain orientation effects on electrical properties of bismuth layer-structured ferroelectric Pb(1–x)(NaCe)(x/2)Bi4Ti4O15 solid solution. J. Appl. Phys. 55, 1092–1099 (1984)

    Article  CAS  Google Scholar 

  8. H. Shulman, M. Testorf, D. Damjanovic et al., Microstructure, electrical conductivity, and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79, 3124–3128 (1996)

    Article  CAS  Google Scholar 

  9. T. Takenaka, T. Gotoh, S. Mutoh et al., A new series of bismuth layer-structured ferroelectrics. Jpn. J. Appl. Phys. 34, 5384–5388 (1995)

    Article  CAS  Google Scholar 

  10. T. Takenaka, T. Gotoh, S. Mutoh et al., Possibility of new bismuth layer-structured ferroelectrics Nam-1.5Bi2.5NbmO3m+3 (2≤m≤5). Ferroelectrics. 185, 55–58 (1996)

    Article  Google Scholar 

  11. Z.H. Peng, Q. Chen, D. Liu et al., Evolution of microstructure and dielectric properties of (LiCe)-doped Na0.5Bi2.5Nb2O9 Aurivillius type ceramics. Curr. Appl. Phys. 13, 1183–1187 (2013)

    Article  Google Scholar 

  12. Z.G. Gai, J.F. Wang, M.L. Zhao et al., The effect of (Li, Ce) doping in aurivillius phase material Na0.25K0.5Bi4.5Ti4O15. Scripta Materialia. 59, 115–118 (2008)

    Article  CAS  Google Scholar 

  13. Z.G. Gai, J.F. Wang, M.L. Zhao et al., High temperature (NaBi)0.480.04Bi2Nb2O9-based piezoelectric ceramics. Appl. Phys. Lett. 89, 1092 (2006)

    Article  Google Scholar 

  14. L.G. Sun, Q. Chen, J.G. Wu et al., Dielectric and piezoelectric properties of cerium-doped (NaBi)0.49[]0.02Bi2Nb1.98Ta0.02O9- based piezoceramics. Ceram. Int. 40, 14159–14163 (2014)

    Article  CAS  Google Scholar 

  15. Z.Y. Zhou, Y.C. Li, S.P. Hui et al., Dong, effect of tungsten doping in bismuth-layered Na05Bi25Nb2O9 high temperature piezoceramics. Appl. Phys. Lett. 104, 012904 (2014)

    Article  Google Scholar 

  16. K. Shan, Z.Z. Yi, X.T. Yin et al., Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surf Interfaces. 21, 100762 (2020)

    Article  CAS  Google Scholar 

  17. Z. L. Chen, X. P. Jiang, C. Chen, et al., Structural and electric properties of La3+ -doped Na0.5Bi2.5Nb2O9 ceramics, Journal of Ceramics. 41, 350–355(2020)

  18. H.T. Zhang, H.X. Yan, M.J. Reece, The effect of Nd substitution on the electrical properties of Bi3NbTiO9 Aurivillius phase ceramics. J. Appl. Phys. 106, 463 (2009)

    Google Scholar 

  19. X.D. Zhang, H.X. Yan, M.J. Reece, Effect of A site substitution on the properties of CaBi2Nb2O9 ferroelectric ceramics. J. Am. Ceram. Soc. 91, 2928–2932 (2010)

    Article  Google Scholar 

  20. H.C. Hu, M.K. Zhu, F.Y. Xie et al., Effect of Co2O3 additive on structure and electrical properties of 85(Bi1/2Na1/2)TiO3–12(Bi1/2K1/2)TiO3–3BaTiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 92, 2039–2045 (2009)

    Article  CAS  Google Scholar 

  21. X.H. Xing, F. Cao, Z.H. Peng et al., Effect of Co doping on the structural and electrical properties of CaBi2Nb2O9 ceramics. J. Mater. Eng. 46, 36–42 (2018)

    Google Scholar 

  22. C.M. Wang, J.F. Wang, S. Zhang et al., Electromechanical properties of A-site (LiCe)-modified sodium bismuth titanate (Na0.5Bi4.5Ti4O1.5) piezoelectric ceramics at elevated temperature. J. Appl. Phys. 105, 094110–0941105 (2009)

    Article  Google Scholar 

  23. X.J. Wang, X.P. Jiang, H.C. Jiang et al., Effects of B-site Co2O3 doping on microstructure and electrical properties of Na0.25K0.25Bi2.5Nb2O9 ceramics. J Alloys Compds. 646, 528–531 (2015)

    Article  CAS  Google Scholar 

  24. L. Tan, D. Tang, D. Dastan et al., Structures, morphological control, and antibacterial performance of tungsten oxide thin films. Ceram. Int. 47, 17153–17160 (2021)

    Article  CAS  Google Scholar 

  25. K. Shan, Z.Z. Yi, X.T. Yin et al., Mixed conductivities of A-site deficient Y, Cr-doubly doped SrTiO3 as novel dense diffusion barrier and temperature-independent limiting current oxygen sensors. Adv. Powder Technol. 31, 4657–4664 (2020)

    Article  CAS  Google Scholar 

  26. K. Shan, F.R. Zhai, Z.Z. Yi et al., Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf Interfaces 23, 100905 (2021)

    Article  CAS  Google Scholar 

  27. Y.J. Wu, J. Chen, J. Yuan et al., Structure refinements and the influences of A-site vacancies on properties of Na0.5Bi2.5Nb2O9-based high temperature piezoceramics. J. Appl. Phys. 120, 194103 (2016)

    Article  Google Scholar 

  28. L.G. Sun, Q. Chen, D. Wu, J.G. Wu et al., Effect of (LiCe) doping in (NaBi)0.48[]0.04Bi2Nb1.97W0.03O9 high-temperature ceramics. J. Alloys Compds. 625, 113–117 (2015)

    Article  CAS  Google Scholar 

  29. X.Y. Mao, H. Sun, W. Wang et al., Effects of Co-substitutes on multiferroic properties of Bi5FeTi3O15 ceramics. Solid State Commun. 152, 483–487 (2012)

    Article  CAS  Google Scholar 

  30. V. D. Phadtare, V. G. Parale, G. K. Kulkarni, et al., Microwave dielectric properties of barium substituted screen printed CaBi2Nb2O9 ceramic thick films, Ceram. Int. (2018)

  31. F. Altaf, R. Batool, R. Gill et al., Synthesis and electrochemical investigations of ABPBI grafted montmorillonite based polymer electrolyte membranes for PEMFC applications. Renew. Energy 164, 709–728 (2021)

    Article  CAS  Google Scholar 

  32. J.A. Horn, S.C. Zhang, U. Selvaraj et al., Templated grain growth of textured bismuth titanate. J. Am. Ceram. Soc. 82, 921–926 (1999)

    Article  CAS  Google Scholar 

  33. H.X. Yan, C.E. Li, J.G. Zhou et al., Structures and properties of bismuth layer-structured piezoelectric ceramics with high Tc. J. Inorg. Mater. 15, 209–220 (2000)

    CAS  Google Scholar 

  34. Z.L. Guo, C.M. Wang, T.L. Zhao et al., Piezoelectric properties and thermal stabilities of cobalt-modified potassium bismuth titanate. Mater. Chem. Phys. 140, 260–265 (2013)

    Article  CAS  Google Scholar 

  35. Q. Zhang, X.T. Zhu, L. Liang et al., Significantly enhanced dielectric permittivity and low loss in epoxy composites incorporating 3d W-WO3/BaTiO3 foams. J. Mater. Sci. 56, 4254–4265 (2021)

    Article  CAS  Google Scholar 

  36. X.P. Jiang, X.A. Jiang, C. Chen et al., Effect of potassium sodium niobate (KNN) substitution on the structural and electrical properties of Na0.5Bi4.5Ti4O1.5 ceramics. J. Phys. D: Appl. Phys. 49, 125101 (2016)

    Article  Google Scholar 

  37. S. Kumar, S.K.B.R. Varma, Influence of lanthanum doping on the dielectric, ferroelectric and relaxor behaviour of barium bismuth titanate ceramics. J. Phys. D Appl. Phys. 42, 075405 (2009)

    Article  Google Scholar 

  38. G. Parida, J. Bera, Electrical properties of niobium doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics. Ceram. Int. 40, 3139–3144 (2014)

    Article  CAS  Google Scholar 

  39. Q. Xu, M.T. Lanagan, W. Luo et al., Electrical properties and relaxation behavior of Bi0.5Na0.5TiO3-BaTiO3 ceramics modified with NaNbO3. J. Eur. Ceram. Soc. 36, 2469–2477 (2016)

    Article  CAS  Google Scholar 

  40. G.R. Li, L.Y. Zheng, Q.R. Yin et al., Microstructure and ferroelectric properties of MnO2-Doped bismuth-layer (CaSr)Bi4Ti4O15 ceramics. J. Appl. Phys. 98, 064108 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (52062018, 51862016, 51762024), Natural Science Foundation of Jiangxi Province (20192BAB20600, 20192BAB212002), the Foundation of Jiangxi Provincial Education Department (GJJ190712, GJJ190699), Key Laboratory of Inorganic Functional Materials and Devices of Chinese Academy of Sciences (KLIFMD202004), Jingdezhen Science and Technology Bureau (2019GYZD008-23).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangping Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jie, S., Jiang, X., Chen, C. et al. Effect of Co3+ on structure and electrical properties of Na0.5Bi2.5Nb2O9 ceramics. J Mater Sci: Mater Electron 32, 23834–23842 (2021). https://doi.org/10.1007/s10854-021-06777-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-06777-7

Navigation