S. Tao, F. Gao, X. Liu, O. Toft, Preparation and gas-sensing properties of CuFe2O4 at reduced temperature. Mater. Sci. Eng. B 77(2), 172–176 (2000)
Article
Google Scholar
R.D.K. Misra, S. Gubbala, A. Kale, W.F. Egelhoff Jr., A comparison of the magnetic characteristics of nanocrystalline nickel, zinc, and manganese ferrites synthesized by reverse micelle technique. Mater. Sci. Eng. B 111, 164–174 (2004)
Article
Google Scholar
Z. Yue, L. Li, J. Zhou, H. Zhang, Z. Gui, Preparation and characterization of NiCuZn ferrite nanocrystalline powders by auto-combustion of nitrate-citrate gels. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 64(1), 68–72 (1999)
Article
Google Scholar
P. Ravindranathan, K.C. Patil, Novel solid solution precursor method for the preparation of ultrafine Ni–Zn ferrites. J. Mater. Sci. 22(9), 3261–3264 (1987)
ADS
Article
Google Scholar
S. Bid, S.K. Pradhan, Preparation of zinc ferrite by high-energy ball-milling and microstructure characterization by Rietveld’s analysis. Mater. Chem. Phys. 82(1), 27–37 (2003)
Article
Google Scholar
A. Verma, O.P. Thakur, C. Prakash, T.C. Goel, R.G. Mendiratta, Temperature dependence of electrical properties of nickel–zinc ferrites processed by the citrate precursor technique. Mater. Sci. Eng. B 116(1), 1–6 (2005)
Article
Google Scholar
R.C. Kambale, P.A. Shaikh, S.S. Kamble, Y.D. Koleka, Effect of cobalt substitution on structural, magnetic and electric properties of nickel ferrite. J. Alloys Compd. 478(1), 599–603 (2009)
Article
Google Scholar
V. Šepelák, I. Bergmann, A. Feldhoff, P. Heitjans, F. Krumeich, D. Menzel, F.J. Litterst, S.J. Campbell, K.D. Becker, J. Phys. Chem. C 111, 5026–5033 (2007)
Article
Google Scholar
S.M. Patange, S.E. Shirsath, B.G. Toksha, S.S. Jadhav, K.M. Jadhav, J. Appl. Phys. 106, 023914 (2009)
ADS
Article
Google Scholar
J. Ding, X.Y. Liu, J. Wang, Y. Shi, Ultrafine ferrite particles prepared by coprecipitation/mechanical milling. Mater. Lett. 44(1), 19–22 (2000)
Article
Google Scholar
A. Verma, R. Chatterjee, Effect of zinc concentration on the structural, electrical and magnetic properties of mixed Mn–Zn and Ni–Zn ferrites synthesized by the citrate precursor technique. J. Magn. Magn. Mater. 306(2), 313–320 (2006)
ADS
Article
Google Scholar
M. George, A.M. John, S.S. Nair, P.A. Joy, M.R. Anantharaman, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302(1), 190–195 (2006)
ADS
Article
Google Scholar
P. Gao, X. Hua, V. Degirmenci, D. Rooney, M. Khraisheh, R. Pollard, R.M. Bowman, E.V. Rebrov, Structural and magnetic properties of Ni1−x
Zn
x
Fe2O4 (x = 0, 0.5 and 1) nanopowders prepared by sol–gel method. J. Magn. Magn. Mater. 348, 44–50 (2013)
ADS
Article
Google Scholar
A.A. Hossain, S.T. Mahmud, M. Seki, T. Kawai, H. Tabata, Structural, electrical transport, and magnetic properties of Ni1−x
Zn
x
Fe2O4. J. Magn. Magn. Mater. 312(1), 210–219 (2007)
ADS
Article
Google Scholar
A. Rafferty, T. Prescott, D. Brabazon, Sintering behaviour of cobalt ferrite ceramic. Ceram. Int. 34(1), 15–21 (2008)
Article
Google Scholar
S.U.N. Ke, I.A.N. Zhongwen, C.H.E.N. Shengming, S.U.N. Yueming, Y.U. Zhong, Effect of sintering process on microstructure and magnetic properties of high frequency power ferrite. Rare Met. 25(6), 509–514 (2006)
Article
Google Scholar
S.V.N.T. Kuchibhatla, A.S. Karakoti, D. Bera, S. Seal, One dimensional nanostructured materials. Prog. Mater. Sci. 52(5), 699–913 (2007)
Article
Google Scholar
C. Suryanarayana, Mechanical alloying and milling. Prog. Mater. Sci. 46(1–2), 1–184 (2001)
Article
Google Scholar
R.H. Kodama, A.E. Berkowitz, E.J. McNiff Jr., S. Foner, Surface spin disorder in NiFe2O4 nanoparticles. Phys. Rev. Lett. 77(2), 394–397 (1996)
ADS
Article
Google Scholar
V. Šepelák, S. Indris, P. Heitjans, K.D. Becker, Direct determination of the cation disorder in nanoscale spinels by NMR, XPS, and Mössbauer spectroscopy. J. Alloys Compd. 434–435, 776–778 (2007)
Article
Google Scholar
C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, K. Shinoda, B. Jeyadevan, K. Tohji, K. Nakatsuka, T. Furubayashi, I. Nakatani, Mixed spinel structure in nanocrystalline NiFe2O4. Phys. Rev. B 63, 184108 (2007)
ADS
Article
Google Scholar
J. Wang, F. Ren, R. Yi, A. Yan, G. Qiu, X. Liu, Solvothermal synthesis and magnetic properties of size-controlled nickel ferrite nanoparticles. J. Alloys Compd. 479(1–2), 791–796 (2009)
Article
Google Scholar
A.G. Roca, J.F. Marco, M.D.P. Morales, C.J. Serna, Effect of nature and particle size on properties of uniform magnetite and maghemite nanoparticles. J. Phys. Chem. C 111(50), 18577–18584 (2007)
Article
Google Scholar
T. Nakamura, Low-temperature sintering of Ni–Zn–Cu ferrite and its permeability spectra. J. Magn. Magn. Mater. 168(3), 285–291 (1997)
ADS
Article
Google Scholar
I. Arief, P.K. Mukhopadhyay, Preparation of spherical and cubic Fe 55 Co 45 microstructures for studying the role of particle morphology in magnetorheological suspensions. J. Magn. Magn. Mater. 360, 104–108 (2014)
ADS
Article
Google Scholar
A. Gómez-Ramírez, M.T. López-López, J.D.G. Durán, F. González-Caballero, Influence of particle shape on the magnetic and magnetorheological properties of nanoparticle suspensions. Soft Matter 5, 3888 (2009)
ADS
Article
Google Scholar
J. de Vicente, J.P. Segovia-Gutiérrez, E. Andablo-Reyes, F. Vereda, R. Hidalgo-Álvarez, Dynamic rheology of sphere- and rod-based magnetorheological fluids. J. Chem. Phys. 131, 194902 (2009)
ADS
Article
Google Scholar
S. Zahi, M. Hashim, A.R. Daud, Synthesis, magnetic properties and microstructure of Ni–Zn ferrite by sol–gel technique. J. Magn. Magn. Mater. 308(2), 177–182 (2007)
ADS
Article
Google Scholar
M. Stefanescu, M. Stoia, C. Caizer, O. Stefanescu, Preparation of x(Ni0.65Zn0.35Fe2O4)/(100−x)SiO2 nanocomposite powders by a modified sol–gel method. Mater. Chem. Phys. 113(1), 342–348 (2009)
Article
Google Scholar
M. Atif, M. Nadeem, R. Grössinger, R.S. Turtelli, Studies on the magnetic, magnetostrictive and electrical properties of sol–gel synthesized Zn doped nickel ferrite. J. Alloys Compd. 509(18), 5720–5724 (2011)
Article
Google Scholar
L.S. Cividanes, T.M.B. Campos, L.A. Rodrigues, D.D. Brunelli, G.P. Thim, Review of mullite synthesis routes by sol–gel method. J. Sol–Gel Sci. Technol. 55(1), 111–125 (2010)
Article
Google Scholar
M. Srivastava, S. Chaubey, A.K. Ojha, Investigation on size dependent structural and magnetic behavior of nickel ferrite nanoparticles prepared by sol–gel and hydrothermal methods. Mater. Chem. Phys. 118(1), 174–180 (2009)
Article
Google Scholar
M.R. Anantharaman, M.J. Asha, G. Mathew, N.S. Swapna, P.A. Joy, Finite size effects on the structural and magnetic properties of sol–gel synthesized NiFe2O4 powders. J. Magn. Magn. Mater. 302, 190–195 (2006)
ADS
Article
Google Scholar
C.F. Zhang, X.C. Zhong, H.Y. Yu, Z.W. Liu, D.C. Zeng, Effects of cobalt doping on the microstructure and magnetic properties of Mn–Zn ferrites prepared by the co-precipitation method. Phys. B Condens. Matter 404(16), 2327–2331 (2009)
ADS
Article
Google Scholar
D. Makovec, A. Kodre, I. Arčon, M. Drofenik, Structure of manganese zinc ferrite spinel nanoparticles prepared with co-precipitation in reversed microemulsions. J. Nanopart. Res. 11(5), 1145–1158 (2008)
Article
Google Scholar
T. Jahanbin, M. Hashim, K. Amin Mantori, Comparative studies on the structure and electromagnetic properties of Ni–Zn ferrites prepared via co-precipitation and conventional ceramic processing routes. J. Magn. Magn. Mater. 322(18), 2684–2689 (2010)
ADS
Article
Google Scholar
I. Sharifi, H. Shokrollahi, M.M. Doroodmand, R. Safi, Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324(10), 1854–1861 (2012)
ADS
Article
Google Scholar
C.G. Reddy, S.V. Manorama, V.J. Rao, Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens. Actuator B Chem. 55, 90–95 (1999)
Article
Google Scholar
R. Qin, F. Li, W. Jiang, L. Liu, Salt-assisted low temperature solid state synthesis of high surface area CoFe2O4 nanoparticles. J. Mater. Sci. Technol. 25, 69 (2009)
Article
Google Scholar
S. Chandarak, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, Effect of calcination conditions on phase formation and characterization of BiFeO3–BaTiO3 powders synthesized by a solid-state reaction. Adv. Mater. Res. 55–57, 241–244 (2008)
Article
Google Scholar
C. Silawongsawat, S. Chandarak, T. Sareein, A. Ngamjarurojana, S. Maensiri, P. Laoratanakul, S. Ananta, R. Yimnirun, Effect of calcination conditions on phase formation and characterization of BiFeO3 powders synthesized by a solid-state reaction. Adv. Mater. Res. 55–57, 237–240 (2008)
Article
Google Scholar
S. Zahi, A.R. Daud, M. Hashim, A comparative study of nickel–zinc ferrites by sol–gel route and solid-state reaction. Mater. Chem. Phys. 106(2), 452–456 (2007)
Article
Google Scholar
U. Ghazanfar, S.A. Siddiqi, G. Abbas, Structural analysis of the Mn–Zn ferrites using XRD technique. J. Mater. Sci. Eng. B 118(1), 84–86 (2005)
Article
Google Scholar
M.H. Abdullah, S.H. Ahmed, Sains-Malaysiana 22, 1 (1993)
Google Scholar
M.A. Ahmed, N. Okasha, S.I. El-Dek, Preparation and characterization of nanometric Mn ferrite via different methods. Nanotechnology 19(6), 065603 (2008)
ADS
Article
Google Scholar
X. Jiang, M.A. Trunov, M. Schoenitz, R.N. Dave, E.L. Dreizin, Mechanical alloying and reactive milling in a high energy planetary mill. J. Alloys Compd. 478(1–2), 246–251 (2009)
Article
Google Scholar
M. Jalaly, M.H. Enayati, F. Karimzadeh, P. Kameli, Mechanosynthesis of nanostructured magnetic Ni–Zn ferrite. Powder Technol. 193(2), 150–153 (2009)
Article
Google Scholar
A. Hajalilou, M. Hashim, H. Mohamed Kamari, Structure and magnetic properties of Ni0.64Zn0.36Fe2O4 nanoparticles synthesized by high-energy milling and subsequent heat treatment. J. Mater. Sci. Mater. Electron. 26(3), 1709–1718 (2014)
Article
Google Scholar
A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, N. Sarami, Synthesis and structural characterization of nano-sized nickel ferrite obtained by mechanochemical process. Ceram. Int. 40, 5881–5887 (2014)
Article
Google Scholar
A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. M. Kamari, Thermal evolution of the Ni-ferrite nanoparticles obtained by mechanical alloying as probed by differential scanning calorimetry. J. Therm. Anal. Calorim. 119(2), 995–1000 (2015)
Article
Google Scholar
I. Ismail, M. Hashim, K. Amin Matori, R. Alias, J. Hassan, Milling time and BPR dependence on permeability and losses of Ni0.5Zn0.5Fe2O4 synthesized via mechanical alloying process. J. Magn. Magn. Mater. 323(11), 1470–1476 (2011)
ADS
Article
Google Scholar
V. Šepelák, D. Baabe, D. Mienert, D. Schultze, F. Krumeich, F.J. Litterst, K.D. Becker, Evolution of structure and magnetic properties with annealing temperature in nanoscale high-energy-milled nickel ferrite. J. Magn. Magn. Mater. 257(2–3), 377–386 (2003)
ADS
Article
Google Scholar
A. Hajalilou, M. Hashim, R. Ebrahimi-Kahrizsangi, H. Mohamed Kamari, Influence of evolving microstructure on electrical and magnetic characteristics in mechanically synthesized polycrystalline Ni-ferrite nanoparticles. J. Alloys Compd. 633, 306–316 (2015)
Article
Google Scholar
I. Chicinas, Soft magnetic nanocrystalline powders produced by mechanical alloying routes. J. Optoelectron. Adv. Mater. 8(2), 439–448 (2006)
Google Scholar
C.N. Chinnasamy, A. Narayanasamy, N. Ponpandian, R.J. Joseyphus, B. Jeyadevan, K. Tohji, K. Chattopadhyay, Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel. J. Magn. Magn. Mater. 238(2–3), 281–287 (2002)
ADS
Article
Google Scholar
S.A. Oliver, V.G. Harris, H.H. Hamdeh, J.C. Ho, Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders. Appl. Phys. Lett. 76(19), 2761 (2000)
ADS
Article
Google Scholar
A. Hajalilou, M. Hashim, N. Sarami, Influence of CaO and SiO2 co-doping on the magnetic, electrical properties and microstructure of a Ni–Zn ferrite. J. Phys. D Appl. Phys. 48(14), 145001 (2015)
ADS
Article
Google Scholar
V. Šepelák, S. Wißmann, K.D. Becker, A temperature-dependent Mössbauer study of mechanically activated and non-activated zinc ferrite. J. Mater. Sci. 33(11), 2845–2850 (1998)
ADS
Article
Google Scholar
A. Verma, T.C. Goel, R.G. Mendiratta, P. Kishan, Magnetic properties of nickel–zinc ferrites prepared by the citrate precursor method. J. Magn. Magn. Mater. 208(1–2), 13–19 (2000)
ADS
Article
Google Scholar
M. Kakihana, Invited review “sol–gel” preparation of high temperature superconducting oxides. J. Sol–Gel Sci. Technol. 6(1), 7–55 (1996)
Article
Google Scholar
B.D. Cullity, C.D. Graham, Introduction to Magnetic Materials, 2nd edn. (IEEE Press & Wiley, New Jersey, 2009)
Google Scholar
A. Goldman, Modern Ferrite Technology, 2nd edn. (Springer, Pittsburgh, 2006)
Google Scholar
R. Louh, T.G. Reynolds, R.C. Buchanan, Ferrite ceramics. Mater.-N. Y. 25, 323–376 (2004)
Google Scholar
T. Miyazaki, H. Jin, The Physics of Ferromagnetism, vol. 158 (Springer, Berlin, 2012)
Book
MATH
Google Scholar
A. Goldman, Handbook of Modern Ferromagnetic Materials (Springer, Berlin, 1999)
Book
Google Scholar
W. Kingery, H. Bowen, D. Uhlmann, Introduction to ceramics (John Wiley & Sons, New York, 1976)
Google Scholar
L. Neel, Magnetic properties of ferrites: ferrimagnetism and antiferromagnetism. Ann. Phys. 3, 137–198 (1948)
Google Scholar
J.S. Kim, W.H. Chang, The effect of calcining temperature on the magnetic properties of the ultra-fine NiCuZn-ferrites. Mater. Res. Bull. 44, 633–637 (2009)
Article
Google Scholar
D.C. Jiles, D.L. Atherton, Theory of ferromagnetic hysteresis. J. Magn. Magn. Mater. 61, 48–60 (1986)
ADS
Article
Google Scholar
O.M. Lemine, M. Bououdina, M. Sajieddine, A.M. Al-Saie, M. Shafi, A. Khatab, M. Alhilali, M. Henini, Synthesis, structural, magnetic and optical properties of nanocrystalline ZnFe2O4. Physica B 406, 1989–1994 (2011)
ADS
Article
Google Scholar
A. Azizi, S.K. Sadrnezhaad, A. Hasani, Morphology and magnetic properties of FeCo nanocrystalline powder produced by modified mechanochemical procedure. J. Magn. Magn. Mater. 322, 3551–3554 (2010)
ADS
Article
Google Scholar
J. Azadmanjiri, S.A. Seyyed Ebrahimi, H.K. Salehani, Magnetic properties of nanosize NiFe2O4 particles synthesized by sol–gel auto combustion method. Ceram. Int. 33, 1623–1625 (2007)
Article
Google Scholar
C.P. Bean, Hysteresis loops of mixtures of ferromagnetic micropowders. J. Appl. Phys. 26, 1381–1383 (1955)
ADS
Article
Google Scholar
R.C. Pohanka, P.L. Smith, S.W. Freiman, L.M. Levinson, Electronic Ceramics, Properties, Devices and Applications. Recent Advances in Piezoelectric Ceramics, Electronic Ceramics (Marcel Dekker, New York, 1988)
Google Scholar
A. Globus, H. Pascard, V. Cagna, Distance between magnetic ions and fundamental properties in ferrites. Le J. Phys. Colloq. 38(C1), C1-163–C1-168 (1977)
Google Scholar
A. Goldman, Modern Ferrite Technology (Van Nostrand Reinhold, New York, 1990)
Google Scholar
C. Guillaud, The properties of manganese-zinc ferrites and the physical processes governing them. Proc. IEE-Part B Radio Electron. Eng. 104(5S), 165–173 (1957)
Article
Google Scholar
T. Pannaparayil, R. Marande, S. Komarneni, Magnetic properties of high-density Mn–Zn ferrites. J. Appl. Phys. 69(8), 5349 (1991)
ADS
Article
Google Scholar
S.B. Waje, M. Hashim, W.D.W. Yusoff, Z. Abbas, Sintering temperature dependence of room temperature magnetic and dielectric properties of Co0.5Zn0.5Fe2O4 prepared using mechanically alloyed nanoparticles. J. Magn. Magn. Mater. 322(6), 686–691 (2010)
ADS
Article
Google Scholar
J. Pankert, Influence of grain boundaries on complex permeability in MnZn ferrites. J. Magn. Magn. Mater. 138(1–2), 45–51 (1994)
ADS
Article
Google Scholar
P.J. van der Zaag, J.J.M. Ruigrok, A. Noordermeer, M.H.W.M. van Delden, P.T. Por, M.T. Rekveldt, D.M. Donnet, J.N. Chapman, The initial permeability of polycrystalline MnZn ferrites: the influence of domain and microstructure. J. Appl. Phys. 74(6), 4085 (1993)
ADS
Article
Google Scholar
M.T. Johnson, E.G. Visser, A coherent model for the complex permeability in polycrystalline ferrites. IEEE Trans. Magn. 26(5), 1987–1989 (1990)
ADS
Article
Google Scholar
A. Žnidaršič, M. Drofenik, High-resistivity grain boundaries in CaO-doped MnZn ferrites for high-frequency power application. J. Am. Ceram. Soc. 82(2), 359–365 (1999)
Google Scholar
H. Shokrollahi, K. Janghorban, Influence of additives on the magnetic properties, microstructure and densification of Mn–Zn soft ferrites. Mater. Sci. Eng. B 141(3), 91–107 (2007)
Article
Google Scholar
K. Kawano, M. Hachiya, Y. Iijima, N. Sato, Y. Mizuno, The grain size effect on the magnetic properties in NiZn ferrite and the quality factor of the inductor. J. Magn. Magn. Mater. 321(16), 2488–2493 (2009)
ADS
Article
Google Scholar
J. Bera, P.K. Roy, Effect of grain size on electromagnetic properties of Ni0.7Zn0.3Fe2O4 ferrite. Phys. B Condens. Matter 363(1–4), 128–132 (2005)
ADS
Article
Google Scholar
M. Le Floc’h, A.M. Konn, Some of the magnetic properties of polycrystalline soft ferrites: origins and developments of a model for the description of the quasistatic magnetization. Le J. Phys. IV 07(C1), C1-187–C1-190 (1997)
Google Scholar
A.T. Raghavender, K. Zadro, D. Pajic, Z. Skoko, N. Biliškov, Effect of grain size on the Néel temperature of nanocrystalline nickel ferrite. Mater. Lett. 64(10), 1144–1146 (2010)
Article
Google Scholar
G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. Magn. IEEE Trans. 26(5), 1397–1402 (1990)
ADS
Article
Google Scholar
P.J. van der Zaag, New views on the dissipation in soft magnetic ferrites. J. Magn. Magn. Mater. 196–197, 315–319 (1999)
Article
Google Scholar
H. Rikukawa, Relationship between microstructures and magnetic properties of ferrites containing closed pores. Magn. IEEE Trans. 18(6), 1535–1537 (1982)
ADS
Article
Google Scholar
F.N. Bradley, Materials for Magnetic Functions, chap. 2 (Hayden, New York, 1976)
N.D. Chaudhari, R.C. Kambale, D.N. Bhosale, S.S. Suryavanshi, S.R. Sawant, Thermal hysteresis and domain states in Ni–Zn ferrites synthesized by oxalate precursor method. J. Magn. Magn. Mater. 322(14), 1999–2005 (2010)
ADS
Article
Google Scholar
D.N. Bhosale, V.M.S. Verenkar, K.S. Rane, P.P. Bakare, S.R. Sawant, Initial susceptibility studies on Cu–Mg–Zn ferrites. Mater. Chem. Phys. 59(1), 57–62 (1999)
Article
Google Scholar